MAHDOLLISET TAUDINVÄLITTÄJÄT

Asiantuntijana Soile Juvonen TTT

Valvojat: Jatta1001, Borrelioosiyhdistys, Bb

Vastaa Viestiin
soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

MAHDOLLISET TAUDINVÄLITTÄJÄT

Viesti Kirjoittaja soijuv » To Tammi 22, 2009 21:19

Joidenkin tutkimusten mukaan borrelia-bakteerin, joka on kupan sukuinen spirokeetta, voi saada elimistöönsä usein eri tavoin. Punkkien ja verta imevien hyönteisten lisäksi se on mahdollista saada verensiirrosta, elinsiirrosta, äidinmaidosta, suorasta kontaktista ja sukupuolikontaktista. Riskin suuruudesta ei ole varmuutta sillä aihetta käsitteleviä tutkimuksia on niukasti.

Tutkimustietoa:

http://www.lymememorial.org/Transmission.htm
Lyme disease

Lyme disease is caused by the bacterium Borrelia burgdorferi. While it is still the most common vector-borne disease in the country, it is also transmitted in other ways. Infection occurs through blood transfusion, organ transplant, direct contact and by congenital means.

Typically, it is contracted with the bite of infected ticks (Amblyomma americanum, Amblyomma maculatum, Haemaphysalis leporispalustris, Ixodes affinis, Ixodes angustus, Ixodes cookei, Ixodes dentatus, Ixodes neotomae, Ixodes pacificus, Ixodes ricinus, Ixodes scapularis, Ixodes spinipalpis, Ixodes texanus, Ixodes Dermacentor albipictus, Ixodes Dermacentor andersoni, Ixodes Dermacentor occidentalis and Ixodes Dermacentor variabilis), however it has also been contracted through infected biting flies, mosquitoes, mites and fleas.


--------------------------------------------------------------------------------

Survival of Borrelia burgdorferi in human blood stored under blood banking conditions.
Nadelman RB, Sherer C, Mack L, Pavia CS, Wormser GP.
Transfusion 1990 30(4):298-301.
Abstract

Hematogenous dissemination of organisms occurs in many spirochetal diseases, including Lyme disease and syphilis. Although syphilis has been transmitted by transfusion, in the vast majority of cases, only fresh blood products were involved, in part because Treponema pallidum survives poorly when refrigerated in citrated blood. Because of the rising incidence of Lyme disease in certain areas, whether its causative agent, Borrelia burgdorferi, could survive under blood banking conditions was studied. Dilutions of stock cultures of two strains of B. burgdorferi were inoculated into samples of citrated red cells (RBCs). Viable spirochetes were recovered from RBCs inoculated with 10(6) organisms per mL, after refrigeration for as long as 6 weeks. It is concluded that B. burgdorferi may survive storage under blood banking conditions and that transfusion-related Lyme disease is theoretically possible.

Experimental inoculation of Peromyscus spp. with Borrelia burgdorferi: evidence of contact transmission.
Burgess EC, Amundson TE, Davis JP, Kaslow RA, Edelman R.
Am J Trop Med Hyg. 1986 Mar;35(2):355-9.
Abstract

In order to determine if Peromyscus spp. could become infected with the Lyme disease spirochete (Borrelia burgdorferi) by direct inoculation and to determine the duration of spirochetemia, 4 P. leucopus and 5 P. maniculatus were inoculated by the intramuscular, intraperitoneal, and subcutaneous routes with an isolate of B. burgdorferi obtained from the blood of a trapped wild P. leucopus from Camp McCoy, Wisconsin. All of the mice developed antibodies to B. burgdorferi which reached a peak indirect immunofluorescent (IFA) geometric mean antibody titer of 10 log2 21 days post-inoculation. B burgdorferi was recovered from the blood of 1 P. maniculatus 21 days post-inoculation. One uninfected Peromyscus of each species was housed in the same cage with the infected Peromyscus as a contact control. Both of the contact controls developed IFA B. burgdorferi antibodies by day 14, indicating contact infection. To determine if B. burgdorferi was being transmitted by direct contact, 5 uninfected P. leucopus and 5 uninfected P. maniculatus were caged with 3 B. burgdorferi infected P. leucopus and 3 infected P. maniculatus, respectively. Each of these contact-exposed P. leucopus and P. maniculatus developed antibodies to B. burgdorferi, and B. burgdorferi was isolated from the blood of 1 contact-exposed P. maniculatus 42 days post-initial contact. These findings show that B. burgdorferi can be transmitted by direct contact without an arthropod vector.


Erythema migrans in solid-organ transplant recipients.
Maraspin V, Cimperman J, Lotric-Furlan S, Logar M, Ruzic-Sabljic E, Strle F.
Clin Infect Dis. 2006 Jun 15;42(12):1751-4.


Borrelia burgdorferi in a newborn despite oral penicillin for Lyme borreliosis during pregnancy.
Weber K, Bratzke HJ, Neubert U, Wilske B, Duray PH.
Pediatric Infectious Disease Journal, 7:286-9. 1988.


Lyme disease transmitted by a biting fly.
Luger SW.
N Engl J Med 1990 Jun 14;322(24):1752.


Ticks and mosquitoes as vectors of Borrelia burgdorferi s. l. in the forested areas of Szczecin.
Kosik-Bogacka DI, Kuźna-Grygiel W, Jaborowska M.
Folia Biol (Krakow). 2007;55(3-4):143-6.


Isolation of the spirochaete Borrelia afzelii from the mosquito Aedes vexans in the Czech Republic.
Halouzka J, Postic D, Hubalek Z.
Med Vet Entomol 1998 Jan;12(1):103-5.


Presence of Borrelia burgdorferi sensu lato in mites parasitizing small rodents.
Netusil J, Zakovska A, Horvath R, Dendis M, Janouskovcova E.
Vector Borne Zoonotic Dis. 2005 Fall;5(3):227-32.


The spirochetal isolates were from several tick and one flea species, including Amblyomma americanum, A. maculatum, Ixodes scapularis, and Ctenocephalides felis.
Teltow GJ, Fournier PV, Rawlings JA.
Am J Trop Med Hyg 1991 May;44(5):469-74.

-----------------------------------------------------------------------------------
Tutkimuksen mukaan borrelioosin voi saada verensiirron välityksellä. Tutkimuksessa noin puolet hiiristä sai borreliosin sen jälkeen kun niille oli annettu borrelioosia sairastavan hiiren verta.
http://www.ncbi.nlm.nih.gov/entrez/quer ... &DB=pubmed

J Parasitol. 2006 Aug;92(4):869-70.

Transfer of Borrelia burgdorferi s.s. infection via blood transfusion in a murine model.

* Gabitzsch ES,
* Piesman J,
* Dolan MC,
* Sykes CM,
* Zeidner NS.

Centers for Disease Control and Prevention, Division of Vector-Borne Infectious Diseases, Bacterial Zoonoses Branch, Foothills Campus, Fort Collins, Colorado 80522, USA.

Without antibiotic treatment, the Lyme-disease-causing bacterium, Borrelia burgdorferi can be cultured from the peripheral blood of human patients nearly 6 wk post-tick bite. To determine if Lyme disease spirochetes can be transmitted from a spirochetemic donor mouse to a naive recipient during blood transfusion, blood taken from immunocompetent infected mice was transfused into either immunodeficient (SCID) mice, inbred immunocompetent animals (C3H/HeJ), or outbred mice. Nine of 19 (47.7%) immunodeficient mice, 7 of 15 (46.8%) inbred immunocompetent mice, and 6 of 10 (60.0%) outbred mice became infected with B. burgdorferi after transfusion.

Our results indicate that it is possible to acquire B. burgdoferi infection via transfused blood in a mouse model of Lyme borreliosis.
PMID: 16995409 [PubMed - indexed for MEDLINE]

.................................................................................
Babesioosi tarttui verensiirron välityksellä:

http://www.cdc.gov/eid/content/15/5/785.htm

free full text from link above

EID Journal Home > Volume 15, Number 5?May 2009

Volume 15, Number 5?May 2009
Dispatch
Babesiosis Acquired through Blood Transfusion, California, USA
Van Ngo and Rachel Civen
Author affiliation: Los Angeles County Department of Public Health, Los Angeles, CA, USA

Suggested citation for this article

Abstract
Babesiosis was reported in a California resident who received a transfusion of blood products collected in the disease-endemic northeastern region of the United States. Babesiosis should be considered year-round in the diagnosis of febrile and afebrile patients with abnormal blood cell counts who have received blood products from disease-endemic areas.
Viimeksi muokannut soijuv, Ma Touko 30, 2011 09:23. Yhteensä muokattu 7 kertaa.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » To Tammi 22, 2009 22:31

Puolalainen tutkimus vahvisti hyttysten mahdollista osuutta borreliabakteerien levittäjinä. Noin 1,7 % 1557 hyttysestä kantoi borreliabakteereita.

http://www.ncbi.nlm.nih.gov/entrez/quer ... &DB=pubmed

Folia Biol (Krakow). 2006;54(1-2):55-9.

Borrelia burgdorferi sensu lato infection in mosquitoes from Szczecin area.

* Kosik-Bogacka DI,
* Kuzna-Grygiel W,
* Gornik K.

Chair and Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland. kodan@sci.pam.szczecin.pl

The aim of the study was to determine the level of infection in mosquitoes with spirochetes Borrelia burgdorferi sensu lato in the woody areas of Szczecin. The mosquitoes were collected from May to September 2003. The spirochetes, Borrelia burgdorferi s. l., present in mosquitoes were detected in mosquitoes with indirect immunofluorescence assay (IFA) using rabbit anti-Borrelia burgdorferi antibodies and goat anti-rabbit IgG marked with fluorescein isocyanate (FITC). A total of 1557 females and 58 males were collected. They represented the genera Aedes (63%) and Culex (37%). The infection level of the mosquitoes from the area studied amounted to 1.7%. The results of the present study confirm the potential of these arthropods to spread Lyme borreliosis.

PMID: 17044261 [PubMed - in process]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Pe Tammi 23, 2009 22:24

"Borrelioosin leviäminen sukupuoliteitse on oletettua paljon suurempi riski. Borreliaspirokeetta muistuttaa kupan aiheuttajaa. Bakteeri on usein vaikeahoitoinen, koska se tunkeutuu syvälle kudoksiin ja muuntuu kystamuotoihin.

Vastaanotollani käy toistuvasti pariskuntia joilla kummallakin on borrelioosi. Antibioottihoito ei ole useinkaan osoittautunut heidän kohdallaan tehokkaaksi. Onko mahdollinen syy siinä, että puolisot tartuttavat taudin toistuvasti toisilleen? Borreliabakteereita on löydetty siemennesteestä, äidinmaidosta, napanuorasta jne.

Tässä tutkimuksessa löysimme yllättäen borreliabakteereita kummaltakin puolisolta 40 %:ssa tapauksia. Kaikissa positiivisissa (siemenneste-/emätinnäyte) tapauksissa, joissa sukupuolipartneri oli tunnettu, myös toisella partnerilla oli positiivinen borreliatestitulos."



This is an abstract presented by Dr. Bach at the International Scientific Conference on Lyme Disease, April, 2001.

RECOVERY OF LYME SPIROCHETES BY PCR IN SEMEN SAMPLES OF PREVIOUSLY DIAGNOSED LYME DISEASE PATIENTS

Dr. Gregory Bach, Do.O.,P.C.

OBJECTIVE

Lyme disease, being a spirochete with pathology similar to syphilis, is often found difficult to treat due to the spirochete invading sanctuary sites and displaying pleomorphic characteristics such as a cyst (L-form). Because a significant portion of sexually active couples present to my office with Lyme disease, with only one partner having a history of tick exposure, the question of possible secondary (sexual)vector of transmission for the spirochete warrents inquiry. Additionally, sexually active couples seem to have a marked propensity for antibiotic failure raising the question of sexually active couples re-infecting themselves through intimate contact.

METHODS:

Lyme spirochetes/DNA have been recovered from stored animal semen. Recovery of spirochete DNA from nursing mother's breast milk and umbilical cord blood by PCR (confirmed by culture/microscopy), have been found in samples provided to my office.

RESULTS:

Surprisingly, initial laboratory testing of semen samples provided by male Lyme patients (positive by western blot/PCR in blood) and the male sexual partner of a Lyme infected female patient were positive approximately 40% of the time. PCR recovery of Lyme DNA nucleotide sequences with microscopic confirmation of semen samples yielded positive results in 14/32 Lyme patients (13 male semen samples and 1 vaginal pap). ALL positive semen/vaginal samples in patients with known sexual partners resulted in
positive Lyme titres/PCR in their sexual partners. 3/4 positive semen patients had no or unknown sexual partners to be tested.

These preliminary findings warrant further study. Current a statistical design study to evaluate the possibility of sexual transition of the spirochete is being undertaken. Our laboratory studies confirm the existence of Lyme spirochetes in semen/vaginal secretions. Whether or not further clinical studies with a larger statistical group will support the hypothesis of sexual transmission remains to be seen. A retrospective clinical study is also underway. We are reviewing the medical records, collecting semen samples of patients who were
previously diagnosed with current and previously treated Lyme disease are being asked to provide semen,pap and blood samples for extensive laboratory testing.

CONCLUSION;

With the initially impressive data, we feel the subsequent statistical study on the sexual transmission of the Lyme spirochete will illuminate a much broader spectrum of public health concerns associated with the disease than the originally accepted tick borne vector.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Pe Tammi 23, 2009 22:48

"Useat infektiosairaudet vaarantavat verivalmisteiden turvallisuutta. Tällä hetkellä ei ole käytössä vielä yhtään tehokasta menetelmää jolla verivalmisteista saataisiin täysin turvallisia. Useiden taudianaiheuttajien kuten babesian, plasmodium spp:n, trypanosoma cruzin, HIV:n jne. on todettu leviävän veren välityksellä. Myös useilla muilla bakteereilla ja viruksilla, kuten borreliabakteerilla, HHV 8:lla jne. tiedetään olevan vireeminen vaihe eli niitä löydetään verenkierrosta. "


Semin Hematol. 2007 Jan;44(1):32-41.

Emerging infectious diseases that threaten the blood supply.

* Alter HJ,
* Stramer SL,
* Dodd RY.

Infectious Diseases Section and Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD.
Following the devastating effects of blood-transmitted human immunodeficiency virus (HIV), blood establishments have become increasingly vigilant for the emergence or re-emergence of new threats to the safety of the blood supply. Many agents have fulfilled the broad definition of emerging blood-transmitted infections, including West Nile virus (WNV), Trypanosoma cruzi, Plasmodium spp., Babesia spp., parvovirus B19, dengue virus, and the prions that cause variant Creutzfeld-Jacob disease (vCJD). Other agents such as human herpes virus- 8 (HHV-8-Kaposi's sarcoma virus) and Borellia (Lyme disease) and, perhaps, avian flu virus, are known to have a viremic phase, but have not yet been proved to be transfusion-transmitted. In the wake of these threats, transfusion services use a variety of donor screening interventions, including serologic assays, nucleic acid assays, and geographic exclusions based on potential exposure. The ultimate safeguard may be a pre-emptive pathogen inactivation strategy that will disrupt all nucleic acid-containing agents (though not prions).

Considerable effort and resources have been invested in this arena, but currently no single technique is effective for inactivation of both liquid and cellular blood products and toxicity issues have not been completely resolved. The blood supply is remarkably safe with the risk of major pathogens such as hepatitis C virus (HCV) and HIV now reduced to less than one transmission per 2 to 3 million exposures. However, to approach near-zero infectious disease risk for emerging and re-emerging pathogens, new strategies such as pathogen inactivation or multi-pathogen microarray technology will need to be developed or refined.

PMID: 17198845 [PubMed - in process]
http://www.ncbi.nlm.nih.gov/entrez/quer ... med_docsum

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » La Tammi 24, 2009 18:35

"Borrelioosi on kupan aiheuttavan spirokeetan kaltainen bakteeri. Borrelioosin hoitaminen on usein osoittautunut vaikeaksi sillä bakteeri pakenee taitavasti ja muuntuu esim kystamuotoon. Seksuaalisesti aktiiveilla pariskunnilla näyttää esiintyvän useammin antibioottihoitojen epäonnistumisia. Tämä herättää kysymyksen, tartuttavatko pariskunnat taudin toistuvasti toinen toisiinsa.

Borreliabakteerin DNA:ta on löydetty eläinten siemennesteestä, äidinmaidosta, napanuorasta jne. Tämä tutkimus vahvistaa spirokeettojen läsnäolon siemennesteessä ja emättimessä. Kaikissa sellaisissa tapauksissa joissa toinen oli borreliapositiivinen, myös toinen oli positiivinen."



http://216.109.125.130/search/cache?p=B ... 1&.intl=us


RECOVERY OF LYME SPIROCHETES BY
PCR IN SEMEN SAMPLES OF PREVIOUSLY
DIAGNOSED LYME DISEASE PATIENTS
Presented by Dr. Gregory Bach, at the International
Scientific Conference on Lyme Disease, April, 2001.

OBJECTIVE:
Lyme disease, being a spirochete with pathology similar to syphilis, is often found difficult to treat due to the spirochete invading sanctuary sites and displaying pleomorphic characteristics such as a cyst (L-form). Because a significant portion of sexually active couples present to my office with Lyme disease, with only one partner having a history of tick exposure, the question of possible secondary (sexual)vector of transmission for the spirochete warrents inquiriy.
Additionally, sexually active couples seem to have a marked propensity for antibiotic failure raising the question of sexually active couples re-infecting themselves through intimate contact.
METHODS:
Lyme spirochetes/DNA have been recovered from stored animal semen. Recovery of spirochete DNA from nursing mother's breast milk and unbilical cord blood by PCR (confirmed by culture/microscopy), have been found in samples provided to my office.

RESULTS:
Suprisingly, initial laboratory testing of semen samples provided by male Lyme patients (positive by western blot/PCR in blood) and the male sexual partner of a Lyme infected female patient were positive approximately 40% of the time. PCR recovery of Lyme DNA nucleotide sequences with microscopic confirmation of semen samples yielded positive results in 14/32 Lyme patients (13 male semen samples and 1 vaginal pap).

ALL positive semen/vaginal samples in patients with known sexual partners resulted in positive Lyme titers/PCR in their sexual partners. 3/4 positive semen patients had no or unknown sexual partners to be tested. These preliminary findings warrent futher study. Current a statistical design study to evaluate the possibility of sexual transition of the spirochete is being undertaken.

Our laboratory studies confirm the existence of Lyme spirochetes in semen/vaginal secretions. Whether or not further clinical studies with a larger statistical group will support the hypothesis of sexual transmission remains to be seen. A retrospective clinical study is also underway.
We are reviewing the medical records, collecting semen samples of patients who were previously diagnosed with current and previously treated Lyme disease are bing asked to provide semen,pap and blood samples for extensive laboratory testing.

CONCLUSION:
With the initially impressive data, we feel the subsequent statistical sudy on the sexual transmission of the Lyme spirochete will illuminate a much broader sectrum of public health concerns associated with the disease than the originally accepted tick borne vector.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » La Tammi 24, 2009 20:26

1. Punkeista löytyi ehrlichiaa; kirpuista riketsiaa, bartonellaa; molemmista coxiellaa. (Egypti). Allaolevassa mielenkiintoisessa suomenkielisessä artikkelissa kerrotaan lisää eri eläinten välittämistä taudeista:

http://www.ncbi.nlm.nih.gov/entrez/quer ... &DB=pubmed

Ann N Y Acad Sci. 2006 Oct;1078:364-7

Population survey of egyptian arthropods for rickettsial agents.

* Loftis AD,
* Reeves WK,
* Szumlas DE,
* Abbassy MM,
* Helmy IM,
* Moriarity JR,
* Dasch GA.

CDC, 1600 Clifton Road NE, MS G-13, Atlanta, GA 30333.aol2@cdc.gov.


Between June 2002 and July 2003, 987 fleas, representing four species, and 1019 ticks, representing one argasid and eight ixodid species, were collected from Egyptian animals. These arthropods were tested for rickettsial agents using polymerase chain reaction. DNAs from Anaplasma and Ehrlichia spp. were detected in 13 ticks. Previously undescribed Bartonella spp. were detected in 21 fleas. Coxiella burnetii was detected in two fleas and 20 ticks. Rickettsia typhi was detected in 27 fleas from 10 cities. Spotted fever group rickettsiae were detected in both fleas and ticks and included Rickettsia aeschlimanii and an unnamed Rickettsia sp.

PMID: 17114742 [PubMed - in process]

2. Punkit tautien välittäjinä

Punkit ovat varsin monimuotoinen vektoriryhmä, joka levittää useita hyvin erilaisia tartuntatauteja eläimistä ihmisiin ja toisiin eläimiin. Punkeista on kotisivuilla myös erillinen kirjoitus.

Punkit ja alkueläinten aiheuttamat taudit

Texas fever -taudin (eli cattle tick-fever, red water disease tai Babés's disease), tieteelliseltä nimeltään babesiasis (aik. piroplasmosis), aiheuttaa Babesia bigeminum (aik. Pyrosoma bigeminum) -niminen alkueläin. Sen muita aiheuttajia ovat Yhdysvalloissa Babesia microtii ja Euroopassa Babesia bovis. Taudin suomenkielinen nimi on nautakarjan punatauti ja sen pääasialliset oireet ovat kuumeilu, vaikea anemia ja veren ilmaantuminen virtsaan.

Yhdysvalloissa taudin välittäjänä on Boophilus bovis -puutiainen. Smith ja Kilborne selvittivät tutkimuksissaan vuosina 1889?1893, että taudinaiheuttajat siirtyivät tautia kantavista naaraspuutiaisista niiden jälkeläisiin ja vasta niiden välittäminä toisiin lehmiin. Suomessa babesiasista levittävänä vektorina toimii Ixodes reduvius (eli ricinus) -puutiainen.

On olemassa toinenkin punkin levittämä nautakarjan punatauti, laidunkuume, joka on selvästi tavallista punatautia lievempi. Sen aiheuttaja on Babesia divergens. Myös hevosissa, muuleissa ja aaseissa esiintyy vastaavanlaista tautia, jonka aiheuttajia ovat Babesia caballi ja Babesia equina.

Afrikassa esiintyy theileriasis -nimistä eläinten alkueläintautia, jonka aiheuttajina ovat Theileria (aik. Gonderia) -lajit. Vakavin näistä taudeista on Theileria parvan aiheuttama "coast fever", jossa karjan kuolleisuus voi olla 90-100 %. "Tropical theileriasis", jonka aiheuttaja on Theileria annulata, on lievempi. Theileriasiksen vektoreina toimivat puutiaiset Rhipicephalus appendiculatus ja simus.

Punkit ja gramnegatiivisten sauvabakteerien aiheuttamat tadit

Tularemia eli jänisrutto, jonka aiheuttaa Francisella (aik. Yersinia) tularensis, on merkittävä punkkien tartuttama bakteeritauti. Taudin siirtäjinä toimivat monet eri puutiaislajit, kuten Ixodes ricinus ja dammini, Dermacentor andersoni ja variabilis, Haemaphysalis-lajit, Rhipicephalus sanguineus ja Amblyomma-lajit. Sen lisäksi eräät kärpäs- ja hyttyslajit voivat toimia taudin vektoreina, Suomessa tavallisimmin hyttynen.

Puutiaiset voivat saada myös salmonellatartunnan ja siirtää sen itse tai jälkeläistensä kautta toisiin eläimiin. Vektorina toimivat lähinnä Dermacentor- ja mahdollisesti Ornithodoros-puutiaiset, jotka välittävät lähinnä eläimissä tautia aiheuttavaa Salmonella enteritidis -bakteeria. Ihmisten salmonellatautien aiheuttajina puutiaisilla ei ole merkitystä käytännössä.

Punkit ja spirokeettojen aiheuttamat taudit

Subtrooppisissa ja trooppisissa maissa Borrelia -spirokeetan eri lajien aiheuttama endeeminen toisintokuume on jatkuvasti esiintyvä tartuntatauti, jonka vektoreina toimivat Ornithodoros ?lajien puutiaiset. Dutton ja Todd sekä Robert Koch osoittivat vuonna 1903, että endeeminen toisintokuume oli Ornithodoros moubata -puutiaisen levittämä tauti ja että se saattoi siirtyä puutiaisissa niiden munien välityksellä ainakin kahteen seuraavaan jälkeläispolveen.

Euroopassa sekä muualla lauhkean ja arktisen alueen maissa epidemioina esiintyvä toisintokuume (Febris recurrens, engl. relapsing fever) on Borrelia recurrentis - spirokeetan aiheuttama sairaus, jossa on noin viikon välein toistuvia kuumevaiheita. Sen vektorina on tavallisesti vaatetäi.

Lymen taudin aiheuttaja on Borrelia burgdorferi ?spirokeetta ja sen vektoreina toimivat useat puutiaiset, mm. Yhdysvalloissa Ixodes dammini ja Suomessa Ixodes ricinus. Lymen tauti (Lyme disease: Lyme on piirikunta Conneticut'issa Yhdysvalloissa) on hitaasti kehittyvä ja pitkäaikainen, hyvin monioireinen sairaus, joka voi hoitamattomana aiheuttaa pysyviä muutoksia lukuisissa elimissä. Taudin ensimmäinen oire on usein punkin pureman ympärille kehittyvä, vähitellen laajeneva ja keskeltä paraneva ihottumarengas. Kotisivuilla erillinen kirjoitus Puutiaisten levittämä Lymen tauti eli borrelioosi.

Punkit ja riketsioiden aiheuttamat taudit

Riketsiat (Rickettsiae) jaetaan tavallisesti Rickettsia-, Coxiella- ja Ehrlichia-sukuihin. Riketsiat aiheuttavat ensisijaisesti eläinten sairauksia, joita useat punkkilajit välittävät. Monet riketsioiden aiheuttamat taudit tarttuvat myös ihmisiin, yleensä puutiaisten välityksellä. Eräät riketsiataudit ovat hoitamattomina hengenvaarallisia, mutta antibiootit tehoavat tavallisesti hyvin niiden aiheuttajiin.

Kalliovuorten kuume eli Rocky Mountain spotted fever (lyh. RMSF, muita nimiä ovat Brazilian spotted fever eli São Paulo fever, Colombian spotted fever, Colorado fever) on ihmisellä vakava tartuntatauti, jonka aiheuttaja on Rickettsia rickettsi. Tauti on luonnossa lähinnä eräiden jänislajien tauti ja sitä välittävät useat puutiaiset, kuten Dermacentor-, Rhipicephalus-, Amblyomma-, Haemaphysalis- ja Ornithodoros-lajit.

Välimeren pilkkukuume tunnetaan myös monilla eri nimillä, kuten Mediterranean spotted fever (MSF), fièvre boutoneuse, Kenya typhus, South African tick typhus ja Indian tick typhus. Taudin aiheuttaja on Rickettsia conorii ja sen välittäjinä toimivat Ixodes-lajien puutiaiset koirista ja eräistä jyrsijöistä. Muita riketsioiden aiheuttamia ja paikallisten puutiaisten eri jyrsijälajeista välittämiä tauteja ovat (North) Queensland tick typhus, riketsiarokko eli rickettsialpox ja North Asian tick-borne rickettsiosis.

Tsutsugamushi-taudin eli pensaikkopilkkukuumeen (engl. scrub typhus) aiheuttaja on Rickettsia tsutsugamushi. Taudinkuvaan kuuluu kahdesta neljään viikkoa kestävä kuume sekä vakavia hengitysteiden ja verenkierron oireita. Se on hoitamattomana hengenvaarallinen. Sen välittäjinä toimivat Actinecida- eli samettipunkkien alalahkoon kuuluvan Trombiculidae -suvun eli pistopunkkien toukat, jotka elävät useiden selkärankaisten ja joidenkin selkärangattomien eläinten loisina.

Afrikassa ja Madagaskarin saarella esiintyy naudoissa, lampaissa ja vuohissa Rickettsia (tai Cowdria) ruminantium'in aiheuttamaa sairautta, josta käytetään nimiä Heartwater sickness tai Drunk bull sickness. Taudille on ominaista nesteen kertyminen sydän- ja keuhkopusseihin. Tautia välittävät puutiaiset Amblyomma hebraeum ja Rhipicephalus bursa.

Etelä-Afrikassa tavataan naudoissa myös Anaplasma marginale -riketsian aiheuttamaa Anaplasmosis-tautia (South African gall sickness), jonka välittäjinä toimivat puutiaiset ja lisäksi eräät verta imevät hyönteiset.

Q-kuumeesta, jonka aiheuttaja on Coxiella burnetii, käytetään monta eri nimeä, kuten Q fever, Query fever, Rickettsial pneumonia, Balkan grippe ja Nine Mail Fever. Tauti kiertää eläimissä yleensä eri puutiaislajien välittämänä. Ihmiseen tauti kuitenkin tarttuu tavallisesti suoraan eläimistä, esim. lehmän, lampaan ja vuohen maidosta tai synnytysjälkeisistä.

Ehrlichiat aiheuttavat sairauksia sekä ihmisellä että eläimillä. Niiden välittäjinä toimivat eräät puutiaislajit. Ehrlichiooseista voidaan mainita ihmisellä Human granulocytic ehrlichiosis (HGE) ja Human monocytic ehrlichiosis (HME), koiralla Ehrlichiosis canis ja naudoilla Pasture fever (laidunkuume). Koirien punkki (Rhipicephalus sanguineus) voi välittää Ehrlichiosis canis ?taudin myös ihmiseen.

Trooppinen rottapunkki Liponyssus bacoti voi toisinaan välittää ihmiseen Rickettsia mooserin aiheuttaman taudin, joka tunnetaan englanninkielisellä nimellä Flea borne murine typhus. Tauti on varsinaisesti hiirten, rottien ja muiden jyrsijöiden sairaus.

Punkit ja virusten aiheuttamat taudit

Suomessa ainoa punkkien välittämä virustauti on Kumlingen taudin nimellä tunnettu aivotulehdus, jota esiintyy Itä- ja Keski-Euroopassa sekä Skandinaviassa. Suomessa sitä tavataan vain Ahvenanmaan ja Turun saaristossa sekä joskus harvoin Kaakkois-Suomessa ja Merenkurkun saaristossa. Tautia välittää tavallinen puutiainen, Ixodes ricinus. Niistä vain muutama tuhannesta on viruksen kantajia. Virusvarastona luonnossa ovat eräät nisäkkäät ja linnut. Puutiaisissa virukset voivat siirtyä sekä kehitysvaiheesta toiseen että sukupolvesta toiseen. Tauti ei ole yleensä vaarallinen, mutta se on kiusallinen ja pitkäaikainen. Tautiin ei ole hoitoa, mutta sitä vastaan voidaan rokottaa.

Suomessa puutiaisista on eristetty myös Uukuniemi-virus, mutta sen merkitys taudinaiheuttajana ihmisellä ei ole selvillä. Muualla maailmalla on olemassa useita puutiaisen välittämiä aivotulehdusviruksia, mm. siperialaisen puutiaisenkefaliitin aiheuttaja, jonka vektoreina toimivat eräät Ixodes-, Dermacentor- ja Haemaphysalis-lajit. Virusten varastoina luonnossa ovat ilmeisesti linnut.

Yhdysvaltojen länsiosissa, erityisesti Coloradossa, esiintyy sairautta nimeltään Colorado tick fever (CTF), joka on Reoviridae -ryhmään kuuluvan orbiviruksen aiheuttama tauti. Taudilla on kaksivaiheinen kulku ja sen oireina on päänsärkyä, oksennuksia ja kuumetta. Toipuminen on tavallista, mutta pienillä lapsilla voi esiintyä vaarallista aivotulehdusta. Taudin välittäjiä ovat Dermacentor andersoni -puutiaiset. Viruksen pääasiallisena tartuntalähteenä on maaorava Citellus lateralis (golden-mantled ground squirrel).

Krimin-Kongon verenvuotokuumetta aiheuttavan viruksen varastoina luonnossa ovat karja sekä villit selkärankaiset. Taudin välittäjinä voivat toimia punkit, mutta se voi levitä myös kosketus- ja pisaratartunnan kautta, mm. teurastamoissa.

Torakat tautien välittäjinä

Torakat (Blattodea) voivat toimia joskus mekaanisina vektoreina levittäen suolistotauteja ja todennäköisesti Q-kuumetta.

Luteet tautien välittäjinä

Luteista (Heteroptera) lutikat (Cimicidae) voivat välittää riketsian aiheuttamaa Q-kuumetta. Samoin lutikat voivat välittää myös Trypanosoma cruzi ?alkueläimen aiheuttamaa amerikkalaista trypanosomiaasia.

Vaatetäit tautien välittäjinä

Toisintokuume (Febris recurrens, engl. relapsing fever) on Borrelia recurrentis -spirokeetan aiheuttama sairaus, jossa on noin viikon välein toistuvia kuumevaiheita. Euroopassa sekä muualla lauhkean ja arktisen alueen maissa se on esiintynyt tavallisesti vaatetäiden (Pediculus vestimenti) levittäminä epidemioina.

Pilkkukuume (Typhus exanthematicus) on riketsian aiheuttama epideeminen tartuntatauti, jonka vektorina toimivat vaatetäit (Pediculus vestimenti). Myös päätäi ja satiainen voivat joskus toimia taudin vektoreina. Pilkkukuume on esiintynyt aikaisemmin suurina epidemioina, joihin on menehtynyt hyvin paljon ihmisiä. Tautia on ilmennyt erityisesti ahtaissa asumisoloissa ja sillä on ollut eri nimityksiä esiintymispaikan mukaisesti: leirikuume, laivakuume, vankilakuume, sairaalakuume jne. Vaatetäi voi todennäköisesti välittää myös Q-kuumetta.

Mäkärät tautien välittäjinä

Mäkärät (Simuliidae) toimivat myös tartuntatautien vektoreina. Suomessa niiden tiedetään välittävän ainakin jänisruttoa, jonka välittäjiä ovat myös hyttyset, eräät muut hyönteiset ja punkit.

Mäkärälajeista Simulium -mäkärä ("buffalo-fly") levittää Onchocerca volvulus ?nimistä filariaa. Mikrofilariat kehittyvät mäkärässä tartuttaviksi ja onkokerkiaasi -taudille on ominaista filarioiden aiheuttamat ihonalaiset kyhmyt. Tauti voi saada aikaan muutoksia silmissä ja aiheuttaa ns. jokisokeuden. Maailman terveysjärjestä WHO on ilmoittanut vuonna 1999, että 25 vuotta kestäneellä kampanjalla Afrikassa aikaisemmin yleinen jokisokeus on saatu kuriin. Taudin hävittäminen perustuu mäkärän toukkien tuhoamiseen alueen jokivesissä.

Sääsket tautien välittäjinä

Itämaissa ihmisillä alavartalon ja alaraajojen vaikeita turvotuksia aiheuttava Elephantiasis arabum todettiin 1860-luvulla Wuchereria bancrofti ?nimisen filariamadon aiheuttamaksi. Sen välittäjiä ovat Culex fatigans- ym. hyttyset. Sairaissa ihmisissä sukukypsien filarioiden synnyttämät mikrofilariot joutuvat verenkiertoon ja sieltä verta imevien hyönteisten kautta toisiin ihmisiin, joissa ne taas saavuttavat sukukypsyyden. Taudille on ominaista filarioiden pesiytyminen erityisesti alavartalon imusuoniin, minkä vuoksi ne aiheuttavat toisinaan vaikeita turvotuksia lantionpohjan elimissä, ulkoisissa sukuelimissä ja alaraajoissa. Wuchereria (tai Brugia) malayi esiintyy myös apinoissa ja kissoissa. Sitä välittävät Mansonioides- ja Anopheles- ym. moskiitot. Mansonella ozzardin ja Achantocheilonema perstansin välittäjiä ovat Culicoides ?lajit.

Sääskistä horkkasääsket (Anopheles?lajit) välittävät malariaplasmodeja, joiden aiheuttama malaria on sekä taudintapausten että kuolemantapausten lukumäärien perusteella merkittävin vektorin välittämistä taudeista. Malarian tartuntatapaa on selostettu kirjoituksen alussa biologisten vektorien toimintatapojen yhteydessä. Malariaplasmodeja on neljä päätyyppiä, vivax, ovale, malariae ja falciparum. Niistä viimeksi mainittu on trooppisten seutujen yleisin tyyppi, joka voi ilman nopeaa hoitoa johtaa lyhyessä ajassa kuolemaan.

Sääskistä hyttyset (Culices) levittävät jänisruton aiheuttajaa (Francisella tularensis) epidemia-aikoina, vaikka tartunta yleensä saadaan kosketustartuntana jäniksistä. Suomessa jänisruton siirtäjänä onkin tavallisimmin hyttynen. Sen lisäksi mäkärät, eräät kärpäslajit ja punkit toimivat jänisruton siirtäjinä.

Sääskistä moskiitot (Aëdes-suku), pääasiallisesti Aëdes aegypti, tartuttavat keltakuumetta Keski-Afrikassa sekä Keski- ja Etelä-Amerikassa. Myös Aëdes albopictus voi levittää keltakuumetta. Hieman poikkeavaa viidakon keltakuumetta (jungle yellow fever) levittävät Keski-Afrikassa Aëdes africanus -moskiitto sekä Etelä-Amerikassa Haemagogus -sukuun kuuluvat moskiitot.

Aëdes aegypti ja Aëdes albopictus levittävät lisäksi dengue-kuumetta trooppisilla alueilla. Vietnamissa on käytetty vuonna 1999 dengue-kuumeen torjumiseen millimetrin mittaista mesocyclops -äyriäistä, joka syö vesistöissä tautia levittävän Aëdes aegypti -hyttysen toukkia. Kenttäkokeet mesocyclopsin istuttamiseksi ovat vaikuttaneet lupaavilta.

Inkoo-virus on koko Suomessa suurnisäkkäissä esiintyvä bunyavirus, joka aiheuttaa ihmisessä toisinaan aivotulehdusta (enkefaliittia). Virusta levittää eräs Aëdes-lajiin kuuluva hyttynen.

Culex ja Culiseta -lajien ns. loppukesän hyttyset levittävät lämpiminä ja sateisina kesinä erään alfa-viruksen aiheuttamaa Pogostan tautia, jota tavataan erityisesti Itä-Suomessa. Culex -lajit levittävät Japan encephalitis (JE) -virusta Aasiassa, Indonesiassa ja Neuvostoliiton kaakkoisosissa. Viruksen isäntäeläimiä ovat haikarat ja muut linnut, kotieläimistä ankat ja ehkä siat.

St. Louisin aivokuume, jonka aiheuttaa linnuissa oleva virus, leviää myös hyttysten välityksellä ja aiheuttaa ihmisissä hengenvaarallista aivokuumetta. Eräät hyttyslajit levittävät Egyptissä Rift Valley fever -nimistä tautia. Tauti, joka aiheuttaa vaurioita silmänpohjissa ja näön alenemista, leviää myös suoraan kotieläimistä.

Aivan 1900-luvun lopulla on todettu Bartonella -bakteerien aiheuttama hengitystietulehdus, jonka on arveltu olleen syynä mm. 1990-luvun alussa esiintyneisiin suunnistajien kuolemantapauksiin. Taudin välittäjiksi on epäilty punkkeja tai hyttysiä, mutta todisteet ovat vielä puutteellisia.

Hietasääsket tautien välittäjinä

Hietasääskistä (Phlebotomidae) Phlebotomus- ja Lutzomyia-lajit välittävät erilaisia leishmania-alkueläinten aiheuttamia sairauksia, kuten kala-azaria ja iholeishmanioosia. Leishamaniat ovat solunsisäisiä flagellaatteja, jotka muuttuvat hietasääskessä yksiflagellaarisiksi leptomonadimuodoiksi.

Hietasääskistä Phlebotomus verrucarum-laji välittää bartonellooseja. Bartonella bacilliformis aiheuttaa Etelä-Amerikassa Carriónin tautia, joka ilmenee kahtena muotona. Niistä Oroya-kuume on äkillinen anemiaa sekä luu- ja nivelkipuja aiheuttava kuumetauti, jossa on hoitamattomana suuri kuolleisuus. Verruca peruana ?taudissa, joka ilmaantuu usein Oroya-kuumeen jälkeen mutta toisinaan myös ilman sitä, on punoittavaa papulaista ihottumaa.

Hietasääskistä Phlebotomus papatasii -lajit välittävät papataci-kuumevirusta, jonka aiheuttama tauti tunnetaan Phlebotomus papataci- tai sandfly-kuumeena.

Kärpäset tautien välittäjinä

Sukaskärpäsiin kuuluva huonekärpänen voi levittää Helicobacter pylori -bakteeria, joka todennäköisesti voi myös lisääntyä kärpäsen ruoansulatuskanavassa. Huonekärpäsen mekaanisesti levittämiä tauteja ovat punatauti, salmonellataudit ja polio, mahdollisesti myös tuberkuloosi, toxoplasmosis ja trachoma.

Glossina ?kärpäset välittävät ihmisillä trypanosoman (Trypanosoma brucei) aiheuttamaa afrikkalaista unitautia ja lukuisia eläinten sairastamia trypanosomiaaseja.

Stomoxys calcitrans -kärpänen välittää mm. pernaruttoa eläimistä toisiin. Se on myös hevosilla ja aaseilla esiintyvän Habronema-madon väli-isäntä.

Paarmat tautien välittäjinä

Paarmoihin (Tabanidae) kuuluvat (hevos)paarmat (Tabanus), sokkopaarmat eli "petokärpäset" (Chrysops) ja suppupaarmat eli sadepaarmat (Haematopota). Ne ovat kaikki verta imeviä ja voivat toimia myös vektoreina.

(Hevos)paarmat voivat siirtää erityisesti lämpimissä maissa pernaruttoa, eläinten trypanosomiaasia ja myös hevosanemia-virusta. Sokkopaarmoista Chrysops discalis (deer-fly, "hirvipaarma") levittää Yhdysvalloissa jänisruttoa. Chrysops dimidiata ja silacea ?lajien sokkopaarmat välittävät Keski- ja Länsi-Afrikassa Loa loa ?filarian aiheuttamaa loiasis -tautia. Verta imevien paarmojen elimistöön jouduttuaan veren mukana tulleet mikrofilariat kehittyvät tartuttaviksi toukiksi. Sen jälkeen toukat siirtyvät veren imemisen yhteydessä uhrina olevaan ihmiseen, jossa filariat kasvavat täysi-ikäisiksi. Ne kiertävät sidekudoksessa aiheuttaen äkillisiä turvotuksia ja yliherkkyysreaktioita.

Kirput tautien välittäjinä

Kirput (Siphonaptera), jotka imevät verta isäntäeläimistä, voivat myös toimia vektoreina. Tunnetuin on rottakirpun osuus ns. mustan surman eli paiseruton leviämisessä 1300-luvun puolivälissä. Paiseruton välittäjänä rotasta toiseen ja rotasta ihmiseen on ollut trooppinen rottakirppu (Xenopsylla cheopis). Se elää sekä isorotan että mustanrotan turkissa. Mustan surman leviämisessä varsinkin mustanrotan merkitys oli suuri, koska se viihtyi ihmisten asumuksissa. Paiseruton voimakasta leviämistä auttoi se, että tauti tarttui myös siihen sairastuneista ihmisistä suoraan toisiin ihmisiin.

Rottakirppu Xenopsylla cheopis voi joskus välittää rotista ihmiseen Flea borne murine typhus ?nimisen taudin, jonka aiheuttaja on riketsioihin kuuluva Rickettsia mooseri.

Ihmiskirppu (Pulex irritans) loisii toisinaan myös koiran ja kissan turkissa. Toisaalta koirankirppu (Ctenocephalus canis) ja kissankirppu (Ctenocephalus felis) saattavat käydä ihmistenkin kimppuun. Ainakin koirankirppu toimii koiran heisimadon (Dipylidium caninum) väli-isäntänä ja vektorina. Kirpun toukat voivat saada koiran makuupaikassa heisimadon munia elimistöönsä, jossa madon varhaiskehitys tapahtuu. Nuoret heisimadot joutuvat koiraan, kun se syö täysikasvuisiksi kehittyneitä kirppuja puhdistaessaan turkkiaan. Koiran heisimato voi loisia myös ihmisessä. Ihmisessä loisivat kirput voivat luultavasti välittää Q-kuumetta.

koko teksti: http://www.saunalahti.fi/arnoldus/vektorit.html


3. Tsekkiläisistä talvehtivista hyttysistä löydettiin eläviä B. afzelii borreliabakteereita (4,2 %):

Ann Agric Environ Med. 2006;13(2):345-8.Click here to read Links
Isolation of Borrelia afzelii from overwintering Culex pipiens biotype
molestus mosquitoes.

* Zakovska A,
* Capkova L,
* Sery O,
* Halouzka J,
* Dendis M.

Department of Comparative Animal Physiology and General Zoology, Faculty
of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic;
alenazak@sci.muni.cz.

A total of 662 samples (winter period: 469; summer period: 193 specimens) of female mosquitoes of the genus Culex, Aedes and Anopheles were collected during the period March 2000-April 2001 from the locality of Vysoke Myto (Eastern Bohemia, Czech Republic). They were examined by dark field microscopy for the presence of spirochetes. The motile spirochetes were observed in 4.2 % of all species of investigated mosquitoes. One spirochetal strain out of the 8 isolation attempts (BRZ14) was obtained (cultivation rate was 12.5 %) and the spirochetal strain was then successfully cultivated and identified using PCR for the presence of Borrelia burgdorferi s.l., and subsequently with the RFLP as genomospecies Borrelia afzelii. This strain was derived from overwintering Culex (Culex) pipiens biotype molestus female mosquitoe. This is apparently one of the sporadic cases of the occurrence of pathogenic borreliae in haematophagous arthropods, other than Ixodes ricinus complex ticks.

PMID: 17199258 [PubMed - in process]

4. Puolalaisen tutkimuksen mukaan borrelioosin saa useimmin punkkien välityksellä. Siitä huolimatta muitakaan taudinlevittäjiä ei tule väheksyä. Esim. Ruotsissa on raportoitu tapaus jossa henkilö sai ihomuutoksen (= borrelioosin) hyttysen piston jälkeen. Puolassa noin kymmenen eri hyttyslajia levittää ihmisille erilaisia tauteja aiheuttavia mikro-organismeja. Hyttysistä on löydetty esim. borreliabakteereita - joillakin alueilla jopa 9,5 - 11 % hyttysistä kantaa borreliabakteereita.

Koko tutkimus: http://www.aaem.pl/pdf/11105.pdf

The results of the present study indicate that ticks have the highest potential for infecting humans with Lyme disease. Within the area studied, 17.1% of ticks were infected with Borrelia burgdorferi spirochetes. Other authors surveying other regions of Poland revealed lower values of the tick infection. Wegner et al., using also IFA, revealed tick infection of 11.5% in the former Olsztyn province in 1993 [31], and 8.8% at recreational areas of burgdorferi. Bukowska et al. [2] detected the presence of B. burgdorferi in 11.6% of ticks collected in the area of Szczecin in 2000 and 9.6% in 2001, while Michalik et al., collected 16.2% in 1998?1999 in popular recreational.

Other authors, employing PCR method, also obtained lower infection values of ticks. et al. [25] revealed 13% infection of ticks captured in the proximity study by Wodecka [33] on the occurrence of B. burgdorferi in the population of I. ricinus in northwestern Poland in 1998-2001 revealed that infected ticks constituted 9.4%. Skotarczak and Wodecka [26], surveying areas of the Zachodniopomorskie Province in 1996, found that 12% of Ixodes ricinus ticks were infected. Skotarczak [27] detected the presence of the spirochetes in 8.6% of tick specimens collected from the same areas in 1997. In 2000 and 2001, ticks from the Mazury lakes amounting to 6.2 and 2.6%, respectively. On the other hand, values of infection higher than in the present study, were found only in Wielkopolska by Jenek 1995 (24.5%), by Nowosad et al. [20] in 1997?1998 (22.6%). Even though the principal vector of Lyme borreliosis are ticks, the role of hematophagous insects in the epidemiology of this disease cannot be underestimated.

Table 1. Prevalence of infection of ticks Ixodes ricinus and Aëdes with spirochetes Borrelia burgdorferi within the area studied in 2000 and 2001.

Number of specimens collected infected

Prevalence

(%)

Ticks 215 38 17.7

? Nymphs 193 30 15.5

? Adults 22 8 36.4

Aëdes 947 8 0.8

Prevalence of Borrelia burgdorferi in arthropod vectors within Szczecin area 107

Not all borreliosis-affected patients admitted, in their medical interviews, to having contact with ticks [21]. There have been few documented cases of Lyme borreliosis related to insects in Canada [3] and in the USA (Connecticut) [15]. In Sweden, on the other hand, there was a case of erythema migrans observed after a mosquito bite [6]. In Poland there are about 40 species of mosquitoes representing 5 genera: Anopheles, Aëdes, Culex, Culiseta, and Mansonia [12]. Thirty species of those insects have been reported in Szczecin. Of this number 10 species, including those representing the genus Aëdes, are known to transmit microorganisms pathogenic to humans [29]. In the present study, the collected mosquitoes, lured to a human body, were females representing the genus Aëdes, which is consistent with the observations of Lachmajer et al. [12], who noticed that those insects attack in shaded areas, among trees and bushes.

Mosquitoes are annoying insects, especially when they occur in mass numbers. Mosquitoes also transmit various microorganisms pathogenic to humans, among them Borrelia burgdorferi was recovered from mosquitoes representing the genera Aëdes, Culex, and Anopheles [1, 4, 5, 7, 10, 11, 15, 16, 17, 18]. Studies on the occurrence of B. burgdorferi in mosquitoes have been carried out in a number of research centres in the world. Also in Poland, Kubica-Biernat et al. [11] detected B. burgdorferi a 0.5% infection rate. In our earlier study [10], carried out at recreational areas of Szczecin, we detected prevalence values between 0.6? 3.2% in mosquitoes of the genus Aëdes.

It can be concluded from the results of the other authors that the infection frequency of the Lyme borreliosis among humans is related to the percentage of infected ticks or mosquitoes. In the areas of particularly high incidence of human borreliosis (e.g. Connecticut), Borrelia burgdorferi was found with the aid of IFA in 36.2% of ticks, Ixodes scapularis and in 9.5?11.1% of mosquitoes of the genus Aëdes [16]. On the other hand, in Moravia, Hubalek et al. [7] observed 20.4% of Ixodes ricinus and 4.1% of mosquitoes infected with Borrelia burgdorferi.

The low percentage of infected mosquitoes compared to infected ticks may be related to the 2-week survival period of the spirochetes in the organism of those insects [18]. There has been no report on experimentally proven cases of transovarian or transstadial transmission of the spirochetes,although detection of B. burgdorferi in mosquito larvae by Zakovska [34] may indicate their transovarian route.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » La Tammi 24, 2009 20:30

Seuraavassa vuoden 1991 tutkimuksessa kerrotaan borreliatartunnan olevan mahdollinen raan lihan välityksellä. Sen mukaan suun kautta tapahtuva tartunta näyttää tapahtuneen esim. joillekin tutkimuslaboratorion eläimille. (Suom.huom. Eräässä sivuillamme olleessa borrelioositarinassa nainen kertoi kissansa saaneen borrelioosin sen syötyä metsähiiren.)


Int J Food Microbiol. 1991 Dec; 14(3-4): 247-60.
Borrelia burgdorferi: another cause of foodborne illness?

Farrell GM, Marth EH.

Department of Food Science, University of Wisconsin-Madison 53706.

Borrelia burgdorferi was identified as the etiological agent of Lyme disease in 1982. This Gram-negative spirochete is classified in the order Spirochaetales and the family Spirochaetaceae. The pathogen is fastidious, microaerophilic, mesophilic and metabolises glucose through the Embden-Meyerhof pathway. A generation time of 11 to 12 h at 37 degrees C in Barbour-Stoenner-Kelly medium has been reported. Lyme disease, named after Lyme in Connecticut, is distributed globally. It is the most commonly reported vector-borne disease in the United States, where the incidence is highest in the eastern and midwestern states. Since establishment of national surveillance in 1982, there has been a nine-fold increase in the number of cases reported to the U.S. Centers for Disease Control. The deer tick of the genus Ixodes is the primary vector of Lyme borreliosis. The tick may become infected with B. burgdorferi, by feeding on an infected host, at any point in its 2-year life cycle which involves larval, nymphal and adult stages. The infection rate in deer ticks may be as high as 40% in endemic areas. The primary vertebrate reservoirs for Ixodes are the white-footed mouse (Peromyscus leucopus) and the white-tailed deer (Odocopileus virginianus). Dairy cattle and other food animals can be infected with B. burgdorferi and hence some raw foods of animal origin might be contaminated with the pathogen. Recent findings indicate that the pathogen may be transmitted orally to laboratory animals, without an arthropod vector. Thus, the possibility exists that Lyme disease can be a food infection. In humans, the symptoms of Lyme disease, which manifest themselves days to years after the onset of infection, may involve the skin, cardiac, nervous and/or muscular systems, and so misdiagnosis can occur.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » La Tammi 24, 2009 21:12

1. Ensimmäisen tutkimuksen mukaan borrelibakteerin voi saada suorasta kontaktista ilman hyönteisen tai punkin puremaa.

2. Borreliabakteerin DNA:ta löydettiin virtsasta ja rintamaidosta. Tutkimuksessa tutkittiin 185 henkilön näytteet.



Am J Trop Med Hyg. 1986 Mar;35(2):355-9.

Experimental inoculation of Peromyscus spp. with Borrelia burgdorferi: evidence of contact transmission.

Burgess EC, Amundson TE, Davis JP, Kaslow RA, Edelman R.

In order to determine if Peromyscus spp. could become infected with the Lyme disease spirochete (Borrelia burgdorferi) by direct inoculation and to determine the duration of spirochetemia, 4 P. leucopus and 5 P. maniculatus were inoculated by the intramuscular, intraperitoneal, and subcutaneous routes with an isolate of B. burgdorferi obtained from the blood of a trapped wild P. leucopus from Camp McCoy, Wisconsin.

All of the mice developed antibodies to B. burgdorferi which reached a peak indirect immunofluorescent (IFA) geometric mean antibody titer of 10 log2 21 days post-inoculation. B burgdorferi was recovered from the blood of 1 P. maniculatus 21 days post-inoculation.

One uninfected Peromyscus of each species was housed in the same cage with the infected Peromyscus as a contact control. Both of the contact controls developed IFA B. burgdorferi antibodies by day 14, indicating contact infection.

To determine if B. burgdorferi was being transmitted by direct contact, 5 uninfected P. leucopus and 5 uninfected P. maniculatus were caged with 3 B. burgdorferi infected P. leucopus and 3 infected P. maniculatus, respectively.

Each of these contact-exposed P. leucopus and P. maniculatus developed antibodies to B. burgdorferi, and B. burgdorferi was isolated from the blood of 1 contact-exposed P. maniculatus 42 days post-initial contact.

These findings show that B. burgdorferi can be transmitted by direct contact without an arthropod vector.

PMID: 3513648 [PubMed - indexed for MEDLINE]


2. Diagn Microbiol Infect Dis. 1995 Mar;21(3):121-8. Cited in PMC, LinkOut

Detection of Borrelia burgdorferi DNA by polymerase chain reaction in the urine and breast milk of patients with Lyme borreliosis.
Schmidt BL, Aberer E, Stockenhuber C, Klade H, Breier F, Luger A.

Ludwig Boltzmann Institute for Dermato-Venerological Serodiagnosis, University of Vienna, Austria.

Current laboratory diagnosis of Lyme borreliosis relies on tests for the detection of antibodies to Borrelia burgdorferi with known limitations. By using a simple extraction procedure for urine samples, B. burgdorferi DNA was amplified by a nested PCR with primers that target the specific part of the flagellin gene. To control possible inhibition of the enzyme (polymerase), a special assay using the same primers was developed. We examined 403 urine samples from 185 patients with skin manifestations of Lyme borreliosis. Before treatment, B. burgdorferi DNA was detected in 88 of 97 patients with Lyme borreliosis. After treatment, all but seven patients became nonreactive. Six of these seven persons suffered from intermittent migratory arthralgias or myalgias, and one from acrodermatitis chronica atrophicans. Two of 49 control patients with various dermatologic disorders and none out of 22 presumably healthy persons were reactive in the PCR. In addition to urine, breast milk from two lactating women with erythema migrans was tested and also found reactive. Borrelia burgdorferi DNA can be detected with high sensitivity (91%) by a nested PCR in urine of patients with Lyme borreliosis. In addition, this test can be a reliable marker for the efficacy of treatment.

PMID: 7648832 [PubMed - indexed for MEDLINE]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » La Tammi 24, 2009 22:00

Aiemmin on oletettu lähinnä hirvieläinten ja hiirten toimivan punkkien kantajina. Uuden tutkimuksen mukaan punkkeja löytyy kuitenkin suurimmaksi osaksi oravista ja päästäisistä.

Issue date: 12/4/07 Section: News
News Brief: Bio prof. sheds light on Lyme disease
Alissa Eisenberg
Print
Email http://site.answers.com/main/js/web_ans ... .nafid=100


Recent research by Penn biology professor Dustin Brisson suggests that chipmunks and two shrew species account for nearly three-quarters of carriers of ticks infected with Lyme disease.

The widely held belief was that mice were the main animal carriers of the disease.

The research was conducted in Hudson Valley with Daniel Dykhuizen of Stony Brook University and Richard Ostfeld of the Institute of Ecosystem Studies.

In a University press release Brisson said, "The majority of zoonotic diseases, those that can be transmitted from wild or domestic animals to humans, are generally assumed to have one natural animal host."

Though deer are often associated with transmitting Lyme-disease infected ticks to humans, the insects are rarely infected with the bacteria from the deer's blood.

Rather, ticks harbor the disease after they first drink the blood of a vertebrate, which Brisson's research shows is often from chipmunks and shrews in addition to mice.

Mice were originally thought to be the primary carriers because nearly 90 percent of ticks feeding on an infected mouse contract the disease.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 12:05

Saksalaiset tutkivat 618 punkkia. 6,1 % punkeista kantoi borreliabakteereita. Syksyä kohden infektoituneiden punkkien määrä lisääntyi. 67 % punkkien kantamista borreliabakteereista oli B. afzeliita, 15 % B. valaisianaa, 15 % B. gariniita, 3 % ei kyetty tunnistamaan ja yhdessä punkissa oli sekä B. valaisianaa että B. gariniita.

Int J Med Microbiol. 2008 Mar 5; [Epub ahead of print]

Prevalence of Borrelia burgdorferi s.l. in ticks feeding on humans in
Thuringia/Germany.

Franke J, Kipp S, Flugel C, Dorn W.

Department of Food and Environmental Hygiene, Institute of Nutrition, Friedrich-Schiller-University Jena, Dornburger Strasse 29, D-07743 Jena, Germany.

In 2004, a total of 618 Ixodes ricinus ticks fed on humans were collected by physicians throughout Thuringia. The prevalence rates of Borrelia burgdorferi sensu lato (s.l.) genotypes were determined by nested PCR and restriction fragment length polymorphism, targeting a 0.8-kb fragment of the ospA gene. The total prevalence of B. burgdorferi s.l. was 6.1%. B. afzelii was found in 67%, B. valaisiana in 15% and B. garinii in 15% of the positive ticks (3% could not be determined). In one tick, a double infection with B. valaisiana type II and B. garinii OspA type V was detected. Female adult ticks had the highest infection rate (11.7%), followed by nymphs (4.5%) and larvae (3.4%). The overall prevalence increased from spring (4.0%) to autumn (10.0%). Nevertheless, the risk of infection was maximal in summer, because of a much higher infestation and consequently a higher absolute number of infected ticks. The predominance of B. afzelii probably results from its resistance against human serum. The unexpectedly low total prevalence is possibly caused by immune defence mechanisms (e.g. complement) effective against less resistant B. burgdorferi s.l. strains in the tick.

PMID: 18328779 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 12:30

Kanadalaisen tutkimuksen mukaan muuttolintujen mukana kulkee runsaasti punkkeja
Kanadaan, mutta vain pieni osa punkeista kantoi borreliabakteereita.



Appl Environ Microbiol. 2008 Feb 1; [Epub ahead of print]

The role of migratory birds in introduction and range expansion of Ixodes
scapularis ticks, and Borrelia burgdorferi and Anaplasma phagocytophilum in
Canada.

Ogden NH, Lindsay RL, Hanincova K, Barker IK, Bigras-Poulin M, Charron DF, Heagy
A, Francis CM, O'Callaghan CJ, Schwartz I, Thompson RA.

Foodborne, Waterborne and Zoonotic Infections Division, Public Health Agency of
Canada, Ottawa, Canada; Groupe de recherche en epidemiologie des zoonoses et
sante publique, Faculte de medecine veterinaire, Universite de Montreal, Quebec,
Canada; Special Pathogens Division, Public Health Agency of Canada, National
Microbiology Laboratory, Winnipeg, Canada; Department of Microbiology and
Immunology, New York Medical College, Valhalla, NY, USA; Canadian Cooperative
Wildlife Health Centre, Dept Pathobiology, University of Guelph, Guelph,
Ontario, Canada; International Development Research Centre, Ottawa, Canada; Bird
Studies Canada, Port Rowan, Ontario, Canada; Migratory Bird Populations
Division, Canadian Wildlife Service, Environment Canada, Ottawa, Canada;
Department of Community Health and Epidemiology, Queen's University, Kingston,
Ontario, Canada.

During spring of 2005 and 2006, 39095 northward migrating landbirds were
captured at 12 bird observatories in eastern Canada to investigate the role of
migratory birds in northward range expansion of Lyme borreliosis, Human
Granulocytic Anaplasmosis and their tick vector Ixodes scapularis. The
prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95%
confidence interval [CI] = 0.30 - 0.42), but a nested study by experienced
observers suggested a more realistic infestation prevalence of 2.2% (95% CI =
1.18 -3.73). Mean infestation intensity was 1.66 per bird. Overall, 15.4% of I.
scapularis nymphs (95% CI = 10.7 - 20.9) were PCR-positive for Borrelia
burgdorferi, but only 8% (95% CI = 3.8 - 15.1) were positive when excluding
nymphs collected at Long Point, Ontario where B. burgdorferi is endemic. A wide
range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were
identified in infected ticks, including those associated with disseminated Lyme
disease, and alleles that are rare in northeastern USA. Overall, 0.4% (95% CI =
0.03 - 0.41) of I. scapularis nymphs were PCR-positive for Anaplasma
phagocytophilum. We estimate that migratory birds disperse 50-175 million I.
scapularis across Canada each spring, implicating migratory birds as possibly
significant in I. scapularis range expansion in Canada. However, the low
infection prevalence in ticks carried by the birds raises questions as to how B.
burgdorferi and A. phagocytophilum become endemic in any tick populations
established by bird-transported ticks.

PMID: 18245258 [PubMed - as supplied by publisher]
_________________________________________________________________



Borreliabakteeri leviää merilintujen matkassa (Sveitsi):

Infect Genet Evol. 2008 Feb 23; [Epub ahead of print]

Prevalence and diversity of Lyme borreliosis bacteria in marine birds.

Duneau D, Boulinier T, Gomez-Diaz E, Petersen A, Tveraa T, Barrett RT, McCoy KD.

Genetique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, IRD, 34394
Montpellier, France; Zoologisches Institut, Evolutionsbiologie, Universitat
Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.

A potential role of seabirds in spreading Lyme disease (LB) spirochetes over
large spatial scales was suggested more than 10 years ago when Borrelia garinii
was observed in marine birds of both hemispheres. Since then, there have been
few studies examining the diversity of Borrelia spp. circulating in seabirds, or
the potential interaction between terrestrial and marine disease cycles. To
explore these aspects, we tested 402 Ixodes uriae ticks collected from five
colonial seabird species by amplification of the flaB gene. Both the average
prevalence (26.0%+/-3.9) and diversity of LB spirochetes was high. Phylogenetic
analyses grouped marine isolates in two main clades: one associated with B.
garinii and another with B. lusitaniae, a genospecies typically associated with
lizards. One sequence also clustered most closely with B. burgdorferi sensu
stricto. Prevalence in ticks varied both among seabird species within colonies
and among colonies. However, there was no clear association between different
Borrelia isolates and a given seabird host species.

**Our findings indicate that LB spirochetes circulating in the marine system
are more diverse than previously described and support the hypothesis that
seabirds may be an important component in the global epidemiology and
evolution of Lyme disease.**

Future work should help determine the extent to which isolates are
shared between marine and terrestrial systems.

PMID: 18394972 [PubMed - as supplied by publisher]
Viimeksi muokannut soijuv, Pe Kesä 11, 2010 09:31. Yhteensä muokattu 1 kertaa.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 12:51

http://www.verkkouutiset.fi/juttu.php?id=129039


Lintujen punkit levittävät neuroborrelioosia

IA, 4.6.2008

Punkin levittämä Borrelia-bakteerin alalaji aiheuttaa ihmisen keskushermoston borrelioosia. Tätä neuroborrelioosia levittävät punkit, jotka saavat bakteerin linnuista.

- Neuroborrelioosi on ikävä sairaus, joka voi vaivata eri muodoissaan potilaita pitkän aikaa. Taudin kehittymisen mekanismeja ei kuitenkaan kovin hyvin vielä tunneta. Ei esimerkiksi tiedetä varmuudella, onko kudostuho bakteerin itsensä vai sen herättämän immuunireaktion aiheuttama, sanoi Helsingin yliopiston professori Seppo Meri Suomen Akatemian tiedeaamiaisella keskiviikkona.

Neuroborrelioosia levittävät punkit, jotka saavat bakteerin linnuista. Lintujen punkit voivat siirtyä muun muassa jyrsijöihin ja tartuttaa niihin Borrelia-bakteereita.

- Olemme tutkineet Borrelia-bakteerien lajispesifisyyttä, eli sitä miksi eri borrelialajeja tavataan eri eläimillä. Tulostemme perusteella kyky infektoida eri eläinlajeja perustuu ensisijaisesti bakteerien kykyyn vastustaa isäntälajinsa immuunipuolustusta, erityisesti komplementtitappoa. Borrelia-bakteerit kuolevat niiden eläinten veressä, joille bakteeri ei aiheuta infektiota, Meri sanoo.

Borrelia-bakteerit naamioituvat väistääkseen immuunipuolustusta

Punkin levittämä Borrelia-bakteeri väistää salakavalasti immuunipuolustuksen naamioitumalla omien solujen kaltaiseksi. Veressä oleva komplementtitoiminto pitää elimistön puhtaana mikrobeista, mutta Borrelia-bakteerit sitovat pintaansa komplementin estäjäproteiinia faktori H:ta. Tämä suojaproteiini estää komplementin aiheuttamaa bakteeritappoa.

Meren mukaan se estää myös tulehdusreaktiota, joka punkin puremakohdassa jää suhteellisen vaatimattomaksi verrattuna yleensä bakteerien aiheuttamiin märkäpaiseisiin.
- Näin borrelia pääsee vaivihkaa väistämään immuunipuolustuksen ja leviämään elimistössä aiheuttaen oireita iholla, nivelissä tai keskushermostossa, Meri sanoo.

Afrikkalainen toisintokuume borrelioosin vaarallinen sukulaistauti
Lymen borrelioosin lisäksi borreliat aiheuttavat vaikeaa malariankaltaista toisintokuumetta, jota esiintyy erityisesti Afrikassa.

- Toisintokuumeen aiheuttajat Borrelia recurrentis ja Borrelia duttonii ovat erityisen vastustuskykyisiä komplementille. Tämän komplementtiresistenssin mekanismina on useamman komplementin suojamolekyylin sitominen. Samantapaisesti leptospira-bakteerit aiheuttavat vaikeaa tautia esimerkiksi Etelä-Euroopassa ja Etelä-Amerikassa, Meri kertoo.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 13:16

Ihmiset/eläimet saavat borrelioosin useimmiten punkkien välityksellä , mutta myös hyttyset levittävät tautia (puolalainen tutkimus).

Folia Biol (Krakow). 2007;55(3-4):143-6.

Ticks and mosquitoes as vectors of Borrelia burgdorferi s. l. in the forested areas of Szczecin.

Kosik-Bogacka DI, Kuzna-Grygiel W, Jaborowska M.

Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstancow Wielkopolskich Av. 72, 70-111 Szczecin, Poland.
kodan@sci.pam.szczecin.pl

The aim of the study was to determine the infection level of adult forms and larvae of ticks and mosquitoes with Borrelia burgdorferi in the forested areas of Szczecin. A total of 1699 ticks Ixodes ricinus, including 1422 nymphs, 277 adult forms and 2862 mosquito females representing the genera Aedes (89.6%) and Culex (10.4%) were collected between the years 2004 and 2005. A further 3746 larvae and 1596 pupae of Culex pipiens pipiens were colleted from water bodies.

Borrelia burgdorferi s. l. was detected in the arthropods by the method of indirect immunofluorescence assay (IFA). A positive immunological reaction was detected in 16.6% of the adult forms and in 16.5% of the nymphs of Ixodes ricinus. Spirochetes were also detected in 1.7% of mosquito females, 3.2% of larvae and in 1.6% of pupae of Culex pipiens pipiens. The results of the present study confirm that contact with ticks constitutes the main risk of contracting Lyme disease, although mosquitoes play a role as vectors as well.

Publication Types:
Research Support, Non-U.S. Gov't

PMID: 18274258 [PubMed - in process]
_________________________________________________________________


Lähettäjä: Soijuv Lähetetty: 3.8.2008 19:23

Lisää tutkimuksia joiden mukaan borreliabakteereita löytyy toisinaan (1 - 4 %) myös hyttysistä:

Ann Agric Environ Med. 2006;13(2):345-8.
Isolation of Borrelia afzelii from overwintering Culex pipiens biotype molestus mosquitoes.

Zákovská A, Capková L, Serý O, Halouzka J, Dendis M.
Department of Comparative Animal Physiology and General Zoology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic. alenazak@sci.muni.cz

A total of 662 samples (winter period: 469; summer period: 193 specimens) of female mosquitoes of the genus Culex, Aedes and Anopheles were collected during the period March 2000-April 2001 from the locality of Vysoke Myto (Eastern Bohemia, Czech Republic). They were examined by dark field microscopy for the presence of spirochetes. The motile spirochetes were observed in 4.2 % of all species of investigated mosquitoes. One spirochetal strain out of the 8 isolation attempts (BRZ14) was obtained (cultivation rate was 12.5 %) and the spirochetal strain was then successfully cultivated and identified using PCR for the presence of Borrelia burgdorferi s.l., and subsequently with the RFLP as genomospecies Borrelia afzelii. This strain was derived from overwintering Culex (Culex) pipiens biotype molestus female mosquitoe. This is apparently one of the sporadic cases of the occurrence of pathogenic borreliae in haematophagous arthropods, other than Ixodes ricinus complex ticks.

PMID: 17199258 [PubMed - indexed for MEDLINE

Folia Biol (Krakow). 2006;54(1-2):55-9.
Borrelia burgdorferi sensu lato infection in mosquitoes from Szczecin area.

Kosik-Bogacka DI, Kuźna-Grygiel W, Górnik K.
Chair and Department of Biology and Medical Parasitology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland. kodan@sci.pam.szczecin.pl

The aim of the study was to determine the level of infection in mosquitoes with spirochetes Borrelia burgdorferi sensu lato in the woody areas of Szczecin. The mosquitoes were collected from May to September 2003. The spirochetes, Borrelia burgdorferi s. l., present in mosquitoes were detected in mosquitoes with indirect immunofluorescence assay (IFA) using rabbit anti-Borrelia burgdorferi antibodies and goat anti-rabbit IgG marked with fluorescein isocyanate (FITC). A total of 1557 females and 58 males were collected. They represented the genera Aedes (63%) and Culex (37%). The infection level of the mosquitoes from the area studied amounted to 1.7%. The results of the present study confirm the potential of these arthropods to spread Lyme borreliosis.

PMID: 17044261 [PubMed - indexed for MEDLINE

J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Sep 5;808(2):249-54.

Characterization of spirochetal isolates from arthropods collected in South Moravia, Czech Republic, using fatty acid methyl esters analysis.

Cechová L, Durnová E, Sikutová S, Halouzka J, Nemec M.
Department of Microbiology, Faculty of Science, Masaryk University Brno, Tvrdého 14, 60200 Brno, Czech Republic. lejka@sci.muni.cz

Aim of this study was to evaluate cellular fatty acid analysis for characterization of spirochetes. Strains were isolated from arthropods collected in South Moravia, Czech Republic. Fatty acid methyl esters (FAME) profile was determined for five Borrelia burgdorferi sensu lato (s.l.) strains isolated from Ixodes ricinus ticks, one "Spironema culicis" strain recovered from mosquito Culex pipiens and seven spirochetal strains (not identified yet) isolated from mosquitoes and blackflies. Analysis was performed using a gas chromatography column in conjunction with Microbial Identification System Sherlock (MIDI Inc., Newark, DE, USA). Results obtained on the basis of cluster analysis of FAME profiles showed, that the B. burgdorferi sensu lato isolates could be well separated from other spirochetal isolates. We recommended method used in this study as a useful tool for preliminary identification of spirochetes isolated from ticks and dipterans.

PMID: 15261818 [PubMed - indexed for MEDLINE

Ann Agric Environ Med. 2002;9(2):257-9.
Positive findings of Borrelia burgdorferi in Culex (Culex) pipiens pipiens larvae in the surrounding of Brno city determined by the PCR method.

Zákovská A, Nejedla P, Holíková A, Dendis M.
Department of Comparative Animal Physiology and General Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic. alenazak@sci.muni.cz

After first finding Borrelia in the midgut of imago mosquitoes, we concentrated on the presence of Borrelia in mosquito development stages--larvae of the third or fourth instar. In the summer season in the years of 2000-2001 a total of 439 Culex (Culex) pipiens pipiens larvae were collected from a barrel of rainwater in the Obrany holiday area of Brno city (East Moravia, Czech Republic). The larvae midgut was observed under dark-field microscopy. Ten DFM positive samples (2.28%) were further analysed using the single-tube nested PCR method for the presence of flagellum DNA sequence specific for Borrelia burgdorferi sensu lato, of which 5 were positive. Borrelian positivity of Culex (C.) pipiens pipiens larvae was 1.14%. One spirochete isolated strain in BSK-H medium was obtained. PCR detection for borrelian DNA of the isolated strain was negative. From these results we can conclude that a low percentage Borreliae can be also found in mosquito larvae and are likely to survive into imago stage.

PMID: 12498597 [PubMed - indexed for MEDLINE

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 17:18

Merilinnuista löydettiin punkkeja/borreliabakteereita. Löydökset vaihtelivat lajeittain ja yhdyskunnittain (18,6 % - 77,1 %)

Proc Biol Sci. 2008 Jun 24; [Epub ahead of print]

Variable exposure and immunological response to Lyme disease Borrelia among North Atlantic seabird species.

Staszewski V, McCoy KD, Boulinier T.

Centre of Excellence in Evolutionary Research, University of Jyvaskyla, 40014 Jyvaskyla, Finland C.E.F.E.-CNRS, UMR 5175, 34293 Montpellier, France.

Colonial seabirds often breed in large aggregations. These individuals can be exposed to parasitism by the tick Ixodes uriae, but little is known about the circulation of pathogens carried by this ectoparasite, including Lyme disease Borrelia. Here we investigated the prevalence of antibodies (Ab) against Borrelia burgdorferi sensu lato in seabird species sampled at eight locations across the North Atlantic. Using enzyme-linked immunosorbent assay tests, we found that the prevalence of anti-Borrelia Ab in adult seabirds was 39.6% on average (over 444 individuals), but that it varied among colonies and species. Common guillemots showed higher seroprevalence (77.1%+/-5.9) than black-legged kittiwakes (18.6%+/-6.7) and Atlantic puffins (22.6%+/-6.3). Immunoblot-banding patterns of positive individuals, reflecting the variability of Borrelia antigens against which Ab were produced, also differed among locations and species, and did not tightly match the prevalence of Borrelia phylogroups previously identified in ticks collected from the same host individuals. These results represent the first report of the widespread prevalence of Ab against Borrelia within an assemblage of seabird species and demonstrate that Borrelia is an integrated aspect in the interaction between seabirds and ticks. More detailed studies on the dynamics of Borrelia within and among seabird species at different spatial scales will now be required to better understand the implications of this interaction for seabird ecology and the epidemiology of Lyme disease.

PMID: 18577503 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 17:19

Punkkeja/borreliabakteereita löytyi esim. tsekkiläisistä mustarastaista ja varpuslinnuista.

Appl Environ Microbiol. 2008 Dec 5; [Epub ahead of print]

Differential role of passerine birds in distribution of Borrelia spirochetes: data on ticks from the post-breeding migration period in Central Europe.

Dubska L, Literak I, Kocianova E, Taragelova V, Sychra O.

Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic; Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 842 45 Bratislava 45, Slovak Republic; Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava, Slovakia.

Borrelia spirochetes in bird-feeding ticks were studied in the Czech Republic.

During the post-breeding period (July - September 2005), 1,080 passerine birds were infested by 2,240 Ixodes ricinus subadult ticks. Borrelia garinii was detected in 22.2% ticks, B. valaisiana in 12.8%, B. afzelii in 1.6%, and B. burgdorferi s.s. in 0.3%. Analyzing infections in the context of blood meal volume and stage of ticks, we concluded that European blackbirds Turdus merula, song thrushes T. philomelos and great tits Parus major are capable of transmitting B. garinii; that juvenile blackbirds and song thrushes are prominent reservoirs for B. garinii spirochetes; that other passerine birds investigated play minor roles in transmitting B. garinii; and that the presence B. afzelii in ticks results from infection in former stage. While B. garinii transmission is thus associated with few passerine bird species, these have potential for distributing millions of Lyme disease spirochetes between synanthropic areas.

PMID: 19060160 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 17:55

Sveitsiläisistä mäyristä (37,5 %) löytyi borreliabakteereita (B. afzelii, B. valaisiana).

Vector Borne Zoonotic Dis. 2008 Oct 22; [Epub ahead of print]

Isolation of Borrelia burgdorferi sensu lato from the Skin of the European Badger (Meles meles) in Switzerland.

Gern L, Sell K.

Laboratoire d'Eco-Epidemiologie des parasites, Institut de Biologie, University of Neuchatel, Switzerland.

No data are available on the role of badgers in the ecology of Lyme borreliosis spirochetes in Europe. In a recent study describing validation of a molecular method allowing host DNA identification and Borrelia burgdorferi sensu lato detection in Ixodes ricinus, the simultaneous presence of B. afzelii DNA and of European badger (Meles meles) DNA was detected in I. ricinus ticks in Switzerland. This suggested that badgers might be reservoir hosts for B. afzelii. Here, we present results obtained in a study on badgers conducted in 1996-1997. Thirty-one tissue samples (ear biopsy: n = 25, aspiration fluid: n = 6) from 8 badgers were placed in BSK medium to isolate B. burgdorferi sensu lato and were then examined by polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP). Globally, six Borrelia isolates (6/31, 19.4%) were obtained from 3/8 (37.5%) badgers. These isolates were identified as B. afzelii (n = 3) and B. valaisiana (n = 3).

PMID: 18945190 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 18:00

Hollannissa laidunnetuista metsiköistä löytyi vähemmän jyrsijöitä ja punkkeja kuin laiduntamattomilta alueilta. Laiduntamattomissa tammimetsiköissä oli enemmän punkkeja kuin mäntymetsissä, mutta laidunnetuilla alueilla metsiköiden välillä ei havaittu eroja. Punkeissa esiintyi eri alalajeja; B. garinii, burgdorferi, afzelii ja valaisiana. Viidestä punkista löydettiin lisäinfektioita. Karjassa oli kaiken kaikkiaan vähän punkkeja. Sitä vastoin laiduntamattomien alueiden hiiristä löytyi runsaasti punkkeja.


Appl Environ Microbiol. 2008 Oct 3; [Epub ahead of print]

Variations in Ixodes ricinus density and Borrelia infections associated with cattle introduced into a woodland in the Netherlands.

Gassner F, Verbaarschot P, Smallegange RC, Spitzen J, Van Wieren SE, Takken W.

Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, the Netherlands; Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3A, 6708 PB Wageningen, the Netherlands.

The effect of introduced large herbivores on the abundance of Ixodes ricinus and their Borrelia infections was studied in a natural woodland in the Netherlands. Oak and pine plots either ungrazed or grazed by cattle were selected. Ticks were collected weekly by blanket dragging. Borrelia infections were determined by PCR and RFLP. Rodent densities were estimated using mark-release recapture methods.

On occasion, the cattle were inspected for tick infestations. Meteorological data were recorded in each habitat. Significantly more ticks were collected in the ungrazed woodland than in the grazed woodland. Ungrazed oak habitat had higher tick densities than pine habitat, while in the grazed habitats tick densities were similar. Borrelia infections ranged from zero in larvae, 26% in nymphs to 33% in adult ticks and consisted of B. afzelii, B. burgdorferi s.s., B. garinii or B. valaisiana. Co-infections were found in five ticks. There was no effect of cattle on Borrelia infections in the ticks. In the ungrazed area Borrelia infections in nymphs were significantly higher in oak habitat than in pine habitat. More mice were captured in the ungrazed area and these had a significantly higher tick burden than mice from the grazed area. Tick burden on cattle was low. The results suggest that grazing has a negative effect on small rodents as well as on ticks, but not on Borrelia infections. Implications of these results for management of woodland reserves and risk of Lyme disease are discussed.

PMID: 18836006 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 18:01

Bartonella l. kissanraapimatauti on seuraavan tutkimuksen mukaan mahdollinen verivalmisteiden kautta. Verivalmisteet oli saatu oireettomilta verenluovuttajilta. Bartonellaa löydettiin verivalmisteiden punasoluista säilytyksen jälkeenkin.

Ps. Bartonellan voi saada myös punkkien välityksellä. En ole selvittänyt suomalaisten tautitapausten määrää.



Transfus Med. 2008 Oct;18(5):287-91.

Bartonella henselae survives after the storage period of red blood cell units: is it transmissible by transfusion?

Magalhaes RF, Pitassi LH, Salvadego M, de Moraes AM, Barjas-Castro ML, Velho PE.

Department of Medical Clinic, Dermatology Division, School of Medical Sciences, State University of Campinas, Campinas, Sao Paulo, Brazil.
renatafmagalhaes@uol.com.br

Bartonella henselae is the agent of cat scratch disease and bacillary angiomatosis. Blood donors can be asymptomatic carriers of B. henselae and the risk for transmission by transfusion should be considered. The objective of this study was to demonstrate that B. henselae remains viable in red blood cell (RBC) units at the end of the storage period. Two RBC units were split into two portions. One portion was inoculated with B. henselae and the other was used as a control. All units were stored at 4 degrees C for 35 days. Aliquots were collected on a weekly basis for culture in a dish with chocolate agar, ideal for the cultivation of this agent. Samples were collected on days 1 and 35 and taken for culture in Bact/Alert R blood culture bottles. Aliquots taken simultaneously were fixed in Karnovsky's medium for subsequent electron microscopy evaluation.

Samples from infected bags successfully isolated B. henselae by chocolate agar culture, although Bact/Alert R blood culture bottles remained negative. Bartonella spp. structures within erythrocytes were confirmed by electron microscopy.

The viability of B. henselae was demonstrated after a storage period of RBC units. These data reinforce the possibility of infection by transfusion of blood units collected from asymptomatic blood donors.

PMID: 18937735 [PubMed - in process]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Tammi 25, 2009 18:13

"Pariisin ympärillä olevissa metsissä on runsaasti oravia. Tutkimusten mukaan kolmasosa oravakannasta kantaa borrelioosin aiheuttavaa borreliabakteeria - vaarallista keskushermosto-oireita aiheuttavaa sairautta joka saattaa olla tappava mikäli tautia ei todeta ajoissa."

Paris battles invasion of Siberian chipmunk
Siberian chipmunks have invaded forests around Paris in their tens of thousands, many carrying the potentially lethal Lyme disease.

By Henry Samuel in Paris
Last Updated: 3:52PM BST 20 Oct 2008


Experts are advising people to steer clear of the rodents. Pest specialists are calling for a ban on the sale of Tamias Sibiricus, the Siberian cipmunk known in France as the Korean squirrel. The tiny - but bold - furry creature has five stripes running down its back and its population has exploded in woods all around the French capital - including Versailles.

Experts are advising people strolling in the city's parks and surrounding woodland to steer clear of the rodents, as many of them carry ticks which are infected with Lyme disease.

The chipmunk was first imported from east Asia in the 1970s but a few specimens clearly escaped or were released into the wild, and have successfully adapted to their new home, breeding like wildfire.

"It's impossible to know how many there are overall, but we estimate that at one single site in the southern suburbs - the forest of Sénart - there are several thousand of the chipmunks," said Julie Marmet, a researcher at the Natural History Museum in the French capital.

The inquisitive chipmunks spend most of their time foraging on the ground but like squirrels they flee to trees if threatened. The chipmunks have been placed on the list of the European Union's 100 most invasive species, but experts say it is too early to tell whether they will be as damaging to indigenous species as the grey squirrel in Britain.

The red squirrel population is still relatively intact in France, which is free from grey squirrels.

Scientists want sales of the prolific chipmunk banned as they fear it poses a health hazard to humans. Studies on the colony in the Sénart woods show that up to a third of the chipmunks carry the Borrelia virus which causes Lyme disease - a dangerous nervous condition transmitted by ticks that can be fatal if not treated early.

"The point is that the chipmunks are much less shy than other rodents, so they are more likely to come into contact with humans. We think it is a basic precaution that the animals should be banned from sale in pet shops," said Jean-Louis Chapuis, France's leading expert on the non-indigenous rodents.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Pe Maalis 27, 2009 22:19

Borreliabakteerin on todettu pystyvän siirtymään äidistä lapseen istukan kautta. Seuraavassa esitetään tapausselostus jossa ehrlichia siirtyi äidistä lapseen.

http://content.nejm.org/cgi/content/full/339/6/375

Volume 339:375-378 August 6, 1998 Number 6

Perinatal Transmission of the Agent of Human Granulocytic Ehrlichiosis

Harold W. Horowitz, M.D., Eitan Kilchevsky, M.D., Stuart Haber, M.D., Maria Aguero-Rosenfeld, M.D., Ramon Kranwinkel, M.D., Edward K. James, M.D., Susan J. Wong, Ph.D., Frederick Chu, Ph.D., Dionysios Liveris, Ph.D., and Ira Schwartz, Ph.D.

PubMed Citation

Human granulocytic ehrlichiosis was first described in the United States, in the northern Midwest, in 1994.1 Human granulocytic ehrlichiosis is caused by an organism, still referred to as the agent of human granulocytic ehrlichiosis, that is similar to two animal pathogens, Ehrlichia phagocytophila and E. equi.2,3,4 Transmission of human granulocytic ehrlichiosis occurs through the bites of ixodes ticks, which are the arthropod vectors for Borrelia burgdorferi and Babesia microti.5,6 Human granulocytic ehrlichiosis is an acute, febrile, nonspecific illness that may be severe enough to cause hospitalization and even death, particularly in the elderly.1,7,8 We describe a case of human granulocytic ehrlichiosis that developed in a pregnant woman near term and was transmitted perinatally to her infant.Case Reports

Mother

A 35-year-old woman, 39 weeks pregnant, was admitted to the hospital on October 4, 1997, at the onset of uterine contractions. She had malaise and had been feverish earlier that day. She had had an episode of Lyme disease with erythema migrans and antibodies to B. burgdorferi 10 years earlier and had a history of urinary tract infections. She lived in a tick-infested area of Connecticut. She recalled finding ticks crawling on her one week before admission, but none had embedded themselves in her skin. On admission her temperature was 38.1°C. Laboratory studies were limited to a complete blood count, which revealed a white-cell count of 6300 per cubic millimeter (normal range, 4600 to 11,200), with 5 percent lymphocytes, 75 percent neutrophils, and 17 percent band forms; a hematocrit of 35 percent (normal range, 36.4 to 45.8 ); and a platelet count of 168,000 per cubic millimeter (normal range, 160,000 to 410,000). Urinalysis revealed no white cells. On the following day, the patient had a normal vaginal delivery without complications. Fetal-scalp monitoring was not used. Therapy with clindamycin and gentamicin was begun because of persistent fever. The physical examination was normal, and there were no rashes. A chest roentgenogram, sinus radiographs, and pelvic magnetic resonance images were interpreted as normal. Two sets of routine blood cultures obtained that day were negative. A cervical culture was positive for group B streptococcus.

On the day after delivery, the woman's temperature rose to 40.6°C and she reported chills, malaise, fever, and myalgias. The results of a physical examination again were unremarkable. On that day, her white-cell count was 5600 per cubic millimeter, her hematocrit was 32 percent, and her platelet count was 130,000 per cubic millimeter. Over the next four days, she remained febrile without an identified source of infection. However, she noted some gradual improvement in her systemic symptoms. On October 9, she had a white-cell count of 5000 per cubic millimeter with 20 percent lymphocytes and a platelet count of 98,000 per cubic millimeter. On October 10, her alkaline phosphatase level was 186 U per liter (normal range, 30 to 115), her aspartate aminotransferase level was 74 U per liter (normal range, 7 to 40), her alanine aminotransferase level was 68 U per liter (normal range, 7 to 40), and her lactate dehydrogenase level was 420 U per liter (normal range, 100 to 225). On October 9, a whole-blood sample obtained on October 7 and treated with acid?citrate?dextrose as an anticoagulant demonstrated DNA from the agent of human granulocytic ehrlichiosis on polymerase-chain-reaction (PCR) assay, and a buffy-coat preparation from October 9 revealed morulae in granulocytes. The following day, clindamycin and gentamicin therapy was discontinued, and doxycycline treatment (100 mg orally twice daily) was started. Within 24 hours the patient became afebrile. She was treated for five days and remained well eight months later. The agent of human granulocytic ehrlichiosis was identified in a culture three days after inoculation with a sample taken on October 10, before the beginning of doxycycline therapy.

Sequential serologic indirect-immunofluorescence assays for the agent of human granulocytic ehrlichiosis demonstrated an increase in the antibody titer from 1:80 on October 10 to 1:2560 or more on October 17. An enzyme-linked immunosorbent assay (ELISA) did not detect IgG or IgM antibodies to B. burgdorferi in serum obtained on October 10. However, an ELISA of serum obtained on October 17 was positive for both IgG and IgM antibodies, and Western blotting was positive for IgM, with bands of 93, 66, 41, 39, 35, 29, and 24 kd (that at 24 kd indicates the presence of outer surface protein C [OspC]). B. burgdorferi was not detected by PCR in whole blood obtained on October 10.

Infant

On October 5, a 3000-g girl was born to the patient. The Apgar scores were 8 and 9 at one and five minutes, respectively. Breast-feeding was stopped after 24 hours because of the mother's illness and was not resumed because of the mother's use of doxycycline. The expressed breast milk was discarded. At six days of life, the infant was discharged with her mother. The next day the mother noted that the baby felt warm but fed well. On October 13, the child's ninth day of life, she had a temperature of 39.4°C and was referred for admission.

The physical examination on admission was normal. Treatment with ampicillin and gentamicin was begun after a workup for sepsis. A complete blood count revealed a white-cell count of 5200 per cubic millimeter, with 37 percent neutrophils, 12 percent band forms, and 39 percent lymphocytes, 10 percent monocytes, and 1 percent metamyelocytes; a hematocrit of 37.2 percent; and a platelet count of 92,000 per cubic millimeter. Liver enzyme levels, urine, and cerebrospinal fluid were normal. The cerebrospinal fluid was not examined for morulae. Because human granulocytic ehrlichiosis had been diagnosed in the mother, a buffy-coat smear of the infant's blood was examined, revealing morulae in 23 percent of granulocytes (Figure 1). A retrospective PCR analysis of the infant's blood spot obtained at birth did not detect DNA of the agent of human granulocytic ehrlichiosis.

View larger version (140K):
[in this window]
[in a new window]
Figure 1. Photomicrograph of a Buffy-Coat Smear Stained with Wright's Stain, Showing the Infant's Granulocytes Infected with the Agent of Human Granulocytic Ehrlichiosis (x1000).
Arrows indicate morulae.

After the benefits and risks had been considered, intravenous doxycycline treatment (5 mg per kilogram of body weight per day, divided into two doses) was begun. Within 24 hours, the baby's body temperature returned to normal and her condition was clinically improved. The platelet count and neutrophil count reached nadirs of 66,000 and 990 per cubic millimeter, respectively. Two days after the initiation of treatment, the platelet count rose to 194,000 per cubic millimeter, and 7 percent atypical lymphocytes were found on a peripheral-blood smear. Blood obtained on the day of admission for cultivation of the agent of human granulocytic ehrlichiosis was positive two days after inoculation. A PCR analysis performed on blood obtained at admission also revealed DNA of the agent of human granulocytic ehrlichiosis. Routine blood, urine, and cerebrospinal fluid cultures performed at admission were negative. The child was discharged in good health after five days of intravenous doxycycline. At that time, no morulae were visualized on buffy-coat smears.

An EDTA-treated sample of whole blood obtained from the infant on October 10, five days after birth and three days before her illness, was positive for the agent of human granulocytic ehrlichiosis according to PCR, but negative for morulae. A specimen from that date could not be cultured for the agent of human granulocytic ehrlichiosis because of bacterial contamination. Serologic tests revealed no antibodies to B. burgdorferi on October 23, 18 days after birth, but were positive, with a titer of 1:320, for antibodies to the agent of human granulocytic ehrlichiosis. PCR analysis was negative for B. burgdorferi. The PCR products of cultured agents of human granulocytic ehrlichiosis from the mother and child had identical restriction-fragment?length polymorphisms.

Methods

Evaluation for Infection with the Agent of Human Granulocytic Ehrlichiosis

Buffy-coat smears were stained with Wright's stain, and 1000 granulocytes were examined at a magnification of 500 and 1000 for intragranulocytic morulae. PCR testing was performed on EDTA-treated whole blood to detect the agent of human granulocytic ehrlichiosis by the nested procedure of Sumner et al.,3 with the use of primers HS1/HS6 and HS43/HS45. Serologic analysis for antibodies to the agent of human granulocytic ehrlichiosis was performed with an indirect-immunofluorescence assay that used homologous and heterologous Westchester County isolates of the agent of human granulocytic ehrlichiosis cultured in HL-60 cells.8 HL-60 cell cultures were performed by adapting the techniques described by Goodman et al.9 and were evaluated by Wright's staining for the presence of morulae.8,9 The presence of the agent of human granulocytic ehrlichiosis in cultures was confirmed by PCR analysis and an indirect-immunofluorescence assay that used another patient's high-titer antiserum. Restriction-fragment?length polymorphism analysis of the agent of human granulocytic ehrlichiosis was carried out on a 332-bp fragment of the 16S?23S ribosomal DNA intergenic spacer. This region was amplified by species-specific PCR, the resulting product was digested with either HphI or DdeI, and the digests were analyzed by electrophoresis on 2.5 percent agarose gels.

Evaluation for Infection with B. burgdorferi

An ELISA (Wampole Laboratories, Cranbury, N.J.) was used to test for IgG and IgM antibodies to B. burgdorferi. Individual immunoblot assays for IgG and IgM antibodies to B. burgdorferi (MarDx Diagnostics, Carlsbad, Calif.) were performed and interpreted according to published criteria.10 PCR analysis to detect B. burgdorferi DNA in whole blood treated with an anticoagulant was performed as previously described.11

Discussion

Infection by the agent of human granulocytic ehrlichiosis is an increasing public health concern in the United States and Europe. The agent of human granulocytic ehrlichiosis replicates within granulocytes circulating in peripheral blood, and the case presented here demonstrates that perinatal transmission of human granulocytic ehrlichiosis can occur. The case also sheds some light on the manifestations of clinical human granulocytic ehrlichiosis in the neonatal period.

The mother was apparently infected with the agent of human granulocytic ehrlichiosis toward the end of pregnancy and gave birth to a normal infant. Whether infection with the agent of human granulocytic ehrlichiosis earlier in pregnancy would have had more severe sequelae for mother or child is not known. In sheep and cows, E. phagocytophila causes stillbirth or abortion.12,13 Recent experiments have shown that E. phagocytophila can be transmitted across the placenta in cows.14 Another ehrlichial species, E. risticii, causes abortion and is transmitted transplacentally in horses.15

Clinical disease caused by the agent of human granulocytic ehrlichiosis has rarely been reported in children.7 The reason for this is a matter for speculation. Young sheep and dogs infected with E. phagocytophila and an E. equi?like organism, respectively, have less severe clinical illness than older animals.16,17 However, the infant we describe had a clinical presentation and laboratory abnormalities similar to those found among infected adults,7,8 and a very high percentage of this infant's granulocytes were infected with the agent of human granulocytic ehrlichiosis.

The route of infection of the infant could not be determined. The timing of the onset of illness is consistent with all three potential routes of infection (intrauterine, intrapartum, or through breast-feeding). Although it is tempting to speculate that the agent of human granulocytic ehrlichiosis was transmitted transplacentally, this could not be proved, because the umbilical-cord blood and the placenta had been discarded by the time the infant became ill. The sensitivity of PCR analysis of the dried blood from the neonatal blood-spot card is not known, so the negative results cannot be interpreted with confidence. The frozen expressed breast milk was also discarded before we could test it.

Although we suspect transplacental transmission as the route of infection of the infant, we cannot exclude the possibility that secretions containing blood from the birth canal were introduced into the baby through minor skin abrasions or during suctioning of the respiratory tract. E. phagocytophila has been found in leukocytes from the milk of cows infected with this organism.18 However, we believe that transmission of the agent of human granulocytic ehrlichiosis in breast milk is not a likely route of infection in this case because of the small amount of colostrum produced on the first (and only) day of breast-feeding.

The infant's rapid response to the short course of doxycycline is reassuring. However, even short courses of tetracyclines in pregnant women can lead to tooth discoloration in their children. In this case, given the illness of the child and the lack of clinical data on other antibiotics for the treatment of human granulocytic ehrlichiosis, the benefits of using doxycycline appeared to outweigh the risks. Trovafloxacin (a quinolone antibiotic) and rifampin have in vitro activity against the agent of human granulocytic ehrlichiosis19 but have not been tested in patients with ehrlichiosis. Long-term follow-up of the infant will be required to determine whether human granulocytic ehrlichiosis causes neurodevelopmental problems like those described in human monocytic ehrlichiosis infection of young children.20

The meaning of the mother's positive Western blot assay for IgM antibodies to B. burgdorferi is uncertain. She had no erythema migrans rash. Coinfection with the agent of human granulocytic ehrlichiosis and B. burgdorferi has been proved by culture of both organisms from samples taken simultaneously from a patient.21 However, antibodies alone cannot be used for the diagnosis of Lyme disease in patients acutely infected with the agent of human granulocytic ehrlichiosis, because the production of cross-reactive antibodies is likely.22 In this case, the mother's history of Lyme disease might have increased the likelihood that nonspecific B. burgdorferi?reactive antibodies would be produced in the setting of acute disease.

Transplacental transmission of B. burgdorferi, which may have devastating consequences in early pregnancy, has been well described.23 We argue that the agent of human granulocytic ehrlichiosis may also be transmitted by this route. This possibility raises the question of how to treat pregnant women who have had tick bites. In the general (nonpregnant) population, prophylactic antibiotics should not be prescribed routinely after tick bites.24 However, some authorities suggest prophylaxis for pregnant women with tick bites.25 More data are needed to determine the timing and choice of antibiotic for the treatment of pregnant women and newborn infants exposed to or infected by the agent of human granulocytic ehrlichiosis in areas where this disease is endemic.


Supported in part by grants from the Westchester County Department of Health (CMC-2502, to Dr. Horowitz, and HLT-27017, HLT-27018, and HLT-27019, to Dr. Aguero-Rosenfeld), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (RO1-AR41511, to Dr. Schwartz), and the Centers for Disease Control and Prevention (U50/CCU213698-01-1, to Drs. Wong and Chu).

We are indebted to Fatemeh Kalantarpour, Mehdi Baluch, and Shoba Varde for their technical help in performing assays for the agent of human granulocytic ehrlichiosis and B. burgdorferi and to Kris Keenan for helping in the care of the child.


Source Information

From the Department of Medicine, Division of Infectious Diseases (H.W.H.), and Department of Pathology (M.A.-R.), Westchester County Medical Center and New York Medical College, and the Department of Biochemistry and Molecular Biology, New York Medical College (D.L., I.S.) Valhalla, N.Y.; the Department of Pediatrics, Section of Neonatology (E.K., E.K.J.), and the Department of Pathology (R.K.), Danbury Hospital, Danbury, Conn.; the Department of Medicine, United Hospital, Port Chester, N.Y. (S.H.); and the Wadsworth Center, New York State Department of Health, Albany (S.J.W., F.C.).

Address reprint requests to Dr. Horowitz at the Westchester County Medical Center, Division of Infectious Diseases, Rm. 209, Macy Pavilion S.E., Valhalla, NY 10595.

References

Bakken JS, Dumler JS, Chen S-M, Eckman MR, Van Etta LL, Walker DH. Human granulocytic ehrlichiosis in the upper Midwest United States: a new species emerging? JAMA 1994;272:212-218. [Abstract]
Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol 1994;32:589-595. [Free Full Text]
Sumner JW, Nicholson WL, Massung RF. PCR amplification and comparison of nucleotide sequences from the groESL heat shock operon of Ehrlichia species. J Clin Microbiol 1997;35:2087-2092. [Abstract]
Dumler JS, Asanovich KM, Bakken JS, Richter P, Kimsey R, Madigan JE. Serologic cross-reactions among Ehrlichia equi, Ehrlichia phagocytophila, and human granulocytic Ehrlichia. J Clin Microbiol 1995;33:1098-1103. [Abstract]
Schwartz I, Fish D, Daniels TJ. Prevalence of the rickettsial agent of human granulocytic ehrlichiosis in ticks from a hyperendemic focus of Lyme disease. N Engl J Med 1997;337:49-50. [Free Full Text]
Telford SR III, Dawson JE, Katavolos P, Warner CK, Kolbert CP, Persing DH. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci U S A 1996;93:6209-6214. [Free Full Text]
Bakken JS, Krueth J, Wilson-Nordskog C, Tilden RL, Asanovich K, Dumler JS. Clinical and laboratory characteristics of human granulocytic ehrlichiosis. JAMA 1996;275:199-205. [Abstract]
Aguero-Rosenfeld ME, Horowitz HW, Wormser GP, et al. Human granulocytic ehrlichiosis: a case series from a medical center in New York State. Ann Intern Med 1996;125:904-908. [Free Full Text]
Goodman JL, Nelson C, Vitale B, et al. Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N Engl J Med 1996;334:209-215. [Erratum, N Engl J Med 1996;335:361.] [Free Full Text]
Recommendations for test performance and interpretation from the Second National Conference on Serologic Diagnosis of Lyme Disease. MMWR Morb Mortal Wkly Rep 1995;44:590-591. [Medline]
Liveris D, Wormser GP, Nowakowski J, et al. Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 1996;34:1306-1309. [Abstract]
Stamp JT, Watt JA, Jamieson S. Tick-borne fever as a cause of abortion in sheep. Vet Rec 1950;62:465-470. [Medline]
Cranwell MP, Gibbons JA. Tick-borne fever in a dairy herd. Vet Rec 1986;119:531-532. [Medline]
Pusterla N, Braun U, Wolfensberger C, Lutz H. Intrauterine infection with Ehrlichia phagocytophila in a cow. Vet Rec 1997;141:101-102. [Free Full Text]
Long MT, Goetz TE, Kakoma I, et al. Evaluation of fetal infection and abortion in pregnant ponies experimentally infected with Ehrlichia risticii. Am J Vet Res 1995;56:1307-1316. [Medline]
Stuen S, Hardeng F, Larsen HJ. Resistance to tick-borne fever in young lambs. Res Vet Sci 1992;52:211-216. [Medline]
Egenvall AE, Hedhammar AA, Bjoersdorff AI. Clinical features and serology of 14 dogs affected by granulocytic ehrlichiosis in Sweden. Vet Rec 1997;140:222-226. [Free Full Text]
Pusterla N, Huder J, Wolfensberger C, Braun U, Lutz H. Laboratory findings in cows after experimental infection with Ehrlichia phagocytophila. Clin Diagn Lab Immunol 1997;4:643-647. [Abstract]
Klein MB, Nelson CM, Goodman JL. Antibiotic susceptibility of the newly cultivated agent of human granulocytic ehrlichiosis: promising activity of quinolones and rifamycins. Antimicrob Agents Chemother 1997;41:76-79. [Abstract]
Schutze GE, Jacobs RF. Human monocytic ehrlichiosis in children. Pediatrics 1997;100:127-127.abstract
Nadelman RB, Horowitz HW, Hsieh T-C, et al. Simultaneous human granulocytic ehrlichiosis and Lyme borreliosis. N Engl J Med 1997;337:27-30. [Free Full Text]
Wormser GP, Horowitz HW, Nowakowski J, et al. Positive Lyme disease serology in patients with clinical and laboratory evidence of human granulocytic ehrlichiosis. Am J Clin Pathol 1997;107:142-147. [Medline]
Gardner T. Lyme disease. In: Remington JS, Klein JO, eds. Infectious diseases of the fetus and newborn infant. 4th ed. Philadelphia: W.B. Saunders, 1995:447-528.
Warshafsky S, Nowakowski J, Nadelman RB, Kramer RS, Peterson SJ, Wormser GP. Efficacy of antibiotic prophylaxis for prevention of Lyme disease. J Gen Intern Med 1996;11:329-333. [Medline]
Rahn DW, Malawista SE. Lyme disease: recommendations for diagnosis and treatment. Ann Intern Med 1991;114:472-481.

Related Letters:

Perinatal Transmission of Human Granulocytic Ehrlichiosis
Elston D. M., Edlow J. A., Horowitz H., Kilchevsky E.
Extract | Full Text
N Engl J Med 1998; 339:1941-1943, Dec 24, 1998. Correspondence


This article has been cited by other articles:


Zhang, L., Liu, Y., Ni, D., Li, Q., Yu, Y., Yu, X.-j., Wan, K., Li, D., Liang, G., Jiang, X., Jing, H., Run, J., Luan, M., Fu, X., Zhang, J., Yang, W., Wang, Y., Dumler, J. S., Feng, Z., Ren, J., Xu, J. (2008). Nosocomial Transmission of Human Granulocytic Anaplasmosis in China. JAMA 300: 2263-2270 [Abstract] [Full Text]
Branger, S., Rolain, J. M., Raoult, D. (2004). Evaluation of Antibiotic Susceptibilities of Ehrlichia canis, Ehrlichia chaffeensis, and Anaplasma phagocytophilum by Real-Time PCR. Antimicrob. Agents Chemother. 48: 4822-4828 [Abstract] [Full Text]
Krause, P. J., Corrow, C. L., Bakken, J. S. (2003). Successful Treatment of Human Granulocytic Ehrlichiosis in Children Using Rifampin. Pediatrics 112: e252-253 [Abstract] [Full Text]
Kalantarpour, F., Chowdhury, I., Wormser, G. P., Aguero-Rosenfeld, M. E. (2000). Survival of the Human Granulocytic Ehrlichiosis Agent under Refrigeration Conditions. J. Clin. Microbiol. 38: 2398-2399 [Abstract] [Full Text]
Aguero-Rosenfeld, M. E., Kalantarpour, F., Baluch, M., Horowitz, H. W., McKenna, D. F., Raffalli, J. T., Hsieh, T.-c., Wu, J., Dumler, J. S., Wormser, G. P. (2000). Serology of Culture-Confirmed Cases of Human Granulocytic Ehrlichiosis. J. Clin. Microbiol. 38: 635-638 [Abstract] [Full Text]
BEECHING, N.J., HART, C.A., DUERDEN, B.I. (2000). Tropical and exotic infections: Proceedings of the fifth Liverpool Tropical School Bayer Symposium on Microbial Diseases held on 14 February 1998. J Med Microbiol 49: 5-27 [Full Text]
Elston, D. M., Edlow, J. A., Horowitz, H., Kilchevsky, E. (1998). Perinatal Transmission of Human Granulocytic Ehrlichiosis. NEJM 339: 1941-1943 [Full Text]
(1998). Human Granulocytic Ehrlichiosis Transmitted from Mother to Newborn. JWatch Infect. Diseases 1998: 18-18 [Full Text]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ti Huhti 21, 2009 10:42

Lemmikkieläimet altistuvat ilmaston lämpenemisen myötä yhä useammin hyönteisten ja punkkien välittämiin infektiotauteihin. Punkkien määrä on ilmaston lämpenemisen myötä lisääntynyt ja niitä tavataan yhä pohjoisemmasta. Siitä syystä koirat, hevoset jne. altistuvat tulevaisuudessa yhä useammin esim. punkkien välittämiin tauteihin. Esim. eurooppalainen koirapunkki aiheuttaa malarian kaltaisen sairauden, babesioosin.

http://www.vetscite.org/publish/items/005155/index.html 21 April 2009 Pets may become latest victims of climate change Pets are normally sheltered from the harsh realities of wild living. But across Europe, increasing temperatures will expose pets to new infectious diseases spread by ticks, fleas and mosquitoes, according to new research. Tick populations already appear to be increasing with the change in seasons. As winters become milder, ticks are becoming active all year round. The European dog tick is transmitting a malaria-like disease, canine babesiosis, into countries where it was once rare including Belgium, Germany, Poland and the Netherlands.Meanwhile, Ixodes ticks are living at greater densities across Europe, increasing their risk of passing tick-borne encephalitis to horses and dogs. Cat flea typhus, still a rare disease, may also become more common in both cats and dogs, according to Frederic Beugnet of Merial Animal Health in Lyon, France.In a separate paper, Claudio Genchi of the University of Milan, Italy, has found that dogs in central Europe will increasingly become vulnerable to the roundworm dirofilaria, spread by mosquitoes, as summer temperatures climb high enough for the parasite to incubate in its fly host.Susan Shaw and colleagues at the University of Bristol, UK, have also found a significant reservoir of canine leishmaniosis in dogs living in the southern UK. If climate change allows sandflies to spread into the country, there is a real danger the disease could spread, they warn.Source: Veterinary Parasitology New ScientistApril 21, 2009

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ma Touko 18, 2009 15:16

"Borrelioosin oireet ihomuutoksineen olivat samanlaiset kuin joidenkin hämähäkkien (brown recluse spider) puremasta aiheutuvat oireet. Borrelioosin mahdollisuus tulee huomioida sellaisilla erotusdiagnostisessa mielessä. "

Ann Emerg Med. 2002 May;39(5):558-61.

Lyme disease masquerading as brown recluse spider bite.

Osterhoudt KC, Zaoutis T, Zorc JJ.

Poison Control Center, the Division of Emergency Medicine, The Children's Hospital of Philadelphia, PA 19104, USA. osterhoudtk@email.chop.edu

We report a case of Lyme disease with clinical features resembling those described from brown recluse spider bites. The most striking manifestation was a necrotic skin wound. Brown recluse spider bites may be overdiagnosed in some geographic regions. Tick bite and infection with Borrelia burgdorferi should be considered in the differential diagnosis of necrotic arachnidism in regions endemic for Lyme disease.

Sailairina
Viestit: 565
Liittynyt: Ma Tammi 19, 2009 16:04
Paikkakunta: Kaarina

Viesti Kirjoittaja Sailairina » To Kesä 11, 2009 14:13

Riskiryhmiä mm:

"Eräiden riskiryhmien (metsätyöntekijät, suunnistajat, maanviljelijät) keskuudessa vasta-ainepositiivisten osuus voi olla jopa 20? 50 %." (Hytönen ym. 2008)



"Tick bites, clinical symptoms of Lyme borreliosis, and Borrelia antibody responses in Finnish army recruits training in an endemic region during summer.

Tick bites, associated clinical symptoms, and antibodies against Borrelia burgdorferi were investigated in 77 Finnish army recruits training during summer in an endemic region and 50 control recruits serving outside the habitat of ticks. During a follow-up of 6 months, 26.9% of the study recruits reported tick bites. None gave a history of erythema migrans. Five study recruits and none in the control group had a combination of two or three nonspecific symptoms compatible with Lyme borreliosis. Three of these five study recruits had been bitten by several ticks. Thirteen (16.9%) study recruits and two (4.0%) control recruits had positive antibody levels against B. burgdorferi in their first serum specimens. No significant change in immunoglobulin G antibody levels was seen between the first and second specimens. Immunoglobulin M antibody levels increased in the sera of 13 (11.9%) study recruits and 1 (3.0%) control recruit. We conclude that recruits training in tick habitats are at high risk of tick bites. All recruits starting their military training in endemic areas should be taught to recognize and remove ticks and advised to wear protective clothing.

Oksi J and Viljanen MK

Military medicine 160(9):453-6, 1995 Sep"

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Kesä 14, 2009 19:09

Unkarin liskoista löytyi punkkeja ja niistä borreliabakteereja. (2009)

Vector Borne Zoonotic Dis. 2009 Jun 3; [Epub ahead of print]

Detection of Borrelia burgdorferi sensu lato in Lizards and Their Ticks from Hungary.

Foldvari G, Rigo K, Majlathova V, Majlath I, Farkas R, Pet'ko B.

1 Department of Parasitology and Zoology, Faculty of Veterinary Science, Szent Istvan University , Budapest, Hungary .

Abstract
To investigate the involvement of lizard species in the natural cycle of Borrelia burgdorferi sensu lato (s.l.) in Hungary, a total of 186 reptiles belonging to three species-126 green lizards (Lacerta viridis), 40 Balkan wall lizards (Podarcis taurica), and 20 sand lizards (Lacerta agilis)-were captured in 2007 and 2008. All ticks removed from the lizards were Ixodes ricinus, either larvae (324/472; 68.6%) or nymphs (148/472; 31.4%). More than half (66/126; 52.4%) of L. viridis individuals were infested, and the prevalence of tick infestation on both the other two species was 35% each. All 472 I. ricinus ticks and tissue samples collected from 134 collar scales and 62 toe clips of lizards were further analyzed for the presence of B. burgdorferi s.l. with polymerase chain reaction. The amplification of B. burgdorferi s.l. DNA was successful in 8% (n = 92) of L. viridis, 9% (n = 32) of P. taurica, and 10% (n = 10) of L. agilis tissue samples. Restriction fragment length polymorphism genotyping identified the species Borrelia lusitaniae in all tested lizard samples. Prevalence of B. burgdorferi s.l. in ticks collected from L. viridis, P. taurica, and L. agilis was 8%, 2%, and 0%, respectively. Most of the infected ticks carried B. lusitaniae (74% of genotyped positives); however, Borrelia afzelii (5%) and B. burgdorferi sensu stricto (21%) were detected in ticks removed from green lizards and Balkan wall lizards, respectively. We conclude that lizards, particularly L. viridis, can be important hosts for I. ricinus larvae and nymphs; thus, they can be regarded as reservoirs of these important pathogen vectors. The role of green lizards has been confirmed, and the implication of Balkan wall lizards is suggested in the natural cycle of B. lusitaniae at our study site.

PMID: 19492950 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ke Syys 02, 2009 17:08

Babesia voi tarttua verensiirron välityksellä (USA 2009).

Transfusion. 2009 Jul 16; [Epub ahead of print] Transfusion-transmitted Babesia microti identified through hemovigilance. Tonnetti L, Eder AF, Dy B, Kennedy J, Pisciotto P, Benjamin RJ, Leiby DA. >rom the Transmissible Diseases Department, Jerome H. Holland Laboratory,American Red Cross, Rockville, Maryland; National Headquarters, American RedCross, Washington, DC; and Biomedical Services, American Red Cross, Farmington,Connecticut.

BACKGROUND: Babesia microti, the primary cause of human babesiosis in the UnitedStates, is an intraerythrocytic parasite endemic to the Northeast and upperMidwest. Published studies indicate that B. microti increasingly poses a bloodsafety risk. The American Red Cross Hemovigilance Program herein describes thedonor and recipient characteristics of suspected transfusion-transmitted B.microti cases reported between 2005 and 2007.

STUDY DESIGN AND METHODS:Suspected transfusion-transmitted Babesia infections were reported bytransfusion services or were discovered through recipient-tracing investigationsof prior donations from donors with a positive test for B. microti in aserologic study. Follow-up samples from involved donors were tested byBabesia-specific immunofluorescence assay, Western blot, and/or real-timepolymerase chain reaction analysis. RESULTS: Eighteen definite or probable B.microti infections, including five fatalities, were identified in transfusionrecipients, 16 from hospital-reported cases and two through serologic lookbackstudies. Thirteen recipients were 61 to 84 years old and two were 2 years old oryounger. Two recipients had sickle cell disease and four were known to beasplenic, including one with sickle cell disease. Seventeen antibody-positivedonors were implicated; 11 (65%) were residents in Babesia-endemic areas, whilefour (24%) nonresident donors had a history of travel to endemic areas.

CONCLUSIONS: Transfusion-transmitted B. microti can be a significant cause oftransfusion-related morbidity and mortality, especially in infant, elderly, andasplenic blood recipients. These data demonstrate the need for interventions, inboth endemic and nonendemic areas of the United States, to reduce patient risk. http://eutils.ncbi.nlm.nih.gov/entrez/e ... rlinksPMID: 19624607 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Loka 04, 2009 12:20

Slovakian linnuissa olevista punkeista löydettiin borreliabakteerin alalajeista esim. gariniita (22,2%) ja valaisianaa (12,8 %). "Linnut levittävät punkkeja/bakteeria tehokkaasti laajalle alueellle."

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 2009, p. 596?602 0099-2240/09/$08.00?0 doi:10.1128/AEM.01674-08Copyright © 2009, American Society for Microbiology. All Rights Reserved. "Differential Role of Passerine Birds in Distribution of BorreliaSpirochetes, Based on Data from Ticks Collected from Birds during the Postbreeding Migration Period in Central Europe" Lenka Dubska,1* Ivan Literak,1 Elena Kocianova,2 Veronika Taragelova,3 and Oldrich Sychra1 Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary andPharmaceutical Sciences, Palackeho 1-3, 612 42 Brno, Czech Republic1; Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 842 45 Bratislava, Slovakia2; and Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava, Slovakia3 Received 19 July 2008/Accepted 1 December 2008 Borrelia spirochetes in bird-feeding ticks were studied in the Czech Republic. During the postbreeding period(July to September 2005), 1,080 passerine birds infested by 2,240 Ixodes ricinus subadult ticks were examined.Borrelia garinii was detected in 22.2% of the ticks, Borrelia valaisiana was detected in 12.8% of the ticks, Borreliaafzelii was detected in 1.6% of the ticks, and Borrelia burgdorferi sensu stricto was detected in 0.3% of the ticks.After analysis of infections in which the blood meal volume and the stage of the ticks were considered, weconcluded that Eurasian blackbirds (Turdus merula), song thrushes (Turdus philomelos), and great tits (Parusmajor) are capable of transmitting B. garinii; that juvenile blackbirds and song thrushes are prominentreservoirs for B. garinii spirochetes; that some other passerine birds investigated play minor roles in trans-mitting B. garinii; and that the presence B. afzelii in ticks results from infection in a former stage. Thus, whileB. garinii transmission is associated with only a few passerine bird species, these birds have the potential to distribute millions of Lyme disease spirochetes between urban areas.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ti Joulu 15, 2009 00:31

Miten borrelioosi ja sen hoidot vaikuttavat? Videolla kerrotaan esim. borreliabakteerin tarttumisesta äidistä lapseen ja sukupuoliteitse.

How Lyme Disease and it's Treatments Work.

http://www.youtube.com/watch?v=RTiWfyrN ... re=related

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ti Tammi 19, 2010 21:38

Myös erilaisia muita taudinaiheuttajia, ns."lisäinfektioita" kuten bartonellan ja babesian voi saada verivalmisteista. Maksansiirron saanut lapsi sairastui bartonellaan.


Transpl Infect Dis. 2009 Oct;11(5):474.
Blood transfusion as an alternative bartonellosis transmission in a pediatric liver transplant.

Velho PE.

Publication Types:
Comment
Letter

http://eutils.ncbi.nlm.nih.gov/entrez/e ... md=prlinks
PMID: 19804481 [PubMed - indexed for MEDLINE]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ti Tammi 19, 2010 21:42

Tsekkitutkimuksen (2009) mukaan "joistakin hyttysistä löydettiin borreliabakteeria. Sen sijaan niistä löytyi suuria määriä vielä tuntematonta spirokeettaa."


Ann Agric Environ Med. 2009 Dec;16(2):273-6.
What is the percentage of pathogenic borreliae in spirochaetal findings of
mosquito larvae?

Nejedla P, Norek A, Vostal K, Zakovska A.

Department of Animal Physiology and Immunology, Institute of Experimental
Biology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-61137 Brno,
Czech Republic.

In this study, larvae (1,179 ex.) of mosquito genera Culex were examined for the
presence of spirochaetes by Dark Field Microscopy (DFM) at the locality of
Blansko (Czech Republic) in of 2004-2008.
DFM spirochaete positive samples (25.4%) were investigated by nested PCR; only 4 samples were positive for the presence of Borrelia burgdorferi sensu lato, which is 0.3 % of the total examined samples.

*We can conclude that only a low percentage of pathogenic borreliae are presented in mosquito larvae*, **while the spirochaete of undefined genera infect larvae in high amounts**.


Publication Types:
Research Support, Non-U.S. Gov't

http://eutils.ncbi.nlm.nih.gov/entrez/e ... md=prlinks
PMID: 20047261 [PubMed - in process]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » To Kesä 03, 2010 21:19

"Erilaisten vertaimevien hyönteisten välityksellä voi saada yllättävänkin usein bakteeritartunnan - bartonellan. Taudinaiheuttaja saattaa tarttua myös äidistä lapseen. Tri E. Breitschwert on maailman johtavia bartonellatutkijoita ja hän on ensimmäistä kertaa dokumentoinut tapauksen jossa bakteeri näyttäisi siirtyneen perheenjäsenestä toiseen.

Perheen äiti ja isä kärsivät voimakkaasta uupumuksesta ym. oireista pian avioitumisensa jälkeen. Pian kaksosten syntymän jälkeen toinen lapsista kuoli 9 päivän ikäisenä sydänongelmiin. Toisella lapsellakin ilmeni kroonisia terveysongelmia.

Breitschwerdt tutki kuolleesta lapsesta otettuja näytteitä sekä elossa olevia perheenjäseniä. Kaikilla oli bartonellan aiheuttama infektio. Bartonellan tiedetään aiheuttavan erilaisia kipuja, tulehduksia joita lääkärit eivät useimmiten kykene diagnosoimaan.

Lisätutkimusten tekeminen on vaikeaa sillä tutkimukselle on vaikea löytää rahoittajia. Bakteerien ei tällä hetkellä ajatella olevan merkittävä terveysongelma ihmisille. Breitschwert uskoo että bakteeri on useimpien kroonisten oireiden todellinen syy - lihaskivut, fatiikki, neurologiset oireet, niveltulehdukset jne. Tavanomaisesti käytössä olevat testit eivät yleensä pysty osoittamaan tartuntaa sillä ne testaavat ainoastaan vasta-aineiden muodostumista."



"A bacterial infection typically spread by fleas, lice and biting flies could be more prevalent than many think, and may have been transmitted from a mother to her children at birth, scientists from N.C. State University say.

Dr. Edward Breitschwerdt, an infectious disease veterinarian and one of the world's leading researchers of bacteria called Bartonella, has for the first time documented evidence that the pathogen may have been passed between family members.

Although more studies are needed to back up his findings, Breitschwerdt and colleagues describe the case of a mother and father who began battling chronic aches, fatigues and other symptoms soon after they were married. When their twins were born in 1998, the daughter died after nine days from a heart defect, and the son developed chronic health problems.

Using tissue from the daughter's autopsy and blood from the surviving family members, Breitschwerdt's team discovered that the entire family was infected with the same species of Bartonella bacteria, despite having no shared exposures to flea or lice infestations. Bartonella is known to causes such illnesses as trench fever and cat scratch disease, and it is increasingly suspected of triggering a variety of aches and inflammations that doctors have been unable to diagnose.

"I think we have stumbled across something that is of monumental medical importance," said Breitschwerdt, whose findings were published recently in the Journal of Clinical Microbiology.

Proving the mother-child transmission could be difficult, however. Little funding is available for such research because the bacteria are still not considered a major source of human disease.

Dr. Michael Kosoy, who heads the Bartonella laboratory for the Centers for Disease Control and Prevention in Fort Collins, Colo., said scientists are only beginning to build evidence that Bartonella infections may be more common than previously thought.

"Bartonella are circulated around the world in many animals, but there are different Bartonella species, and the question is how can they be transmitted to humans?" Kosoy said, noting that most known cases have been transmitted from biting insects. He said the NCSU findings about the potential family transmission are compelling but inconclusive.

Dozens of strains

At least 26 strains of Bartonella have been named worldwide, and the list is growing. The most notorious Bartonella infection is cat scratch disease, a fever illness passed to humans from flea-infected cats. Fleas are the primary hosts, and they spread the bacteria in their feces.

Other Bartonella strains spread more serious diseases. Kosoy is studying how often heart inflammation is caused by a Bartonella that thrives among rat fleas in Thailand. He has already established that about 25 percent of unexplained fever illnesses among a group of patients there was caused by Bartonella .

"This is not limited to cat scratch," Kosoy said. "That's just the tip of the iceberg."

Breitschwerdt said he thinks the bacteria may be the hidden cause behind a host of chronic symptoms - muscle aches, neurological problems, fatigue, arthritis - that defy diagnosis.

About two years ago, Breitschwerdt began testing blood samples from a doctor in Maryland, who was curious whether Bartonella infections might be causing problems for some of his patients.

"There are lab tests showing inflammation," but no discernible cause, said Dr. Robert Mozayeni, a Yale-educated rheumatologist who practices in Rockville, Md.

Mozayeni contacted Breitschwerdt and his NCSU colleague, Ricardo Maggi, who together developed a more sensitive test for Bartonella. Routine blood tests fail to detect Bartonella because they search for antibodies that the body is slow to produce.

Instead, Breitschwerdt and Maggi figured out how to cultivate the bacteria in the laboratory from blood samples of infected people. They founded a company called Galaxy Diagnostics to handle the laboratory volume.

Of Mozayeni's mystery patients tested at the lab, nearly 20 percent had Bartonella infections.

"I suspect this is going to be one of the causes of rheumatoid arthritis and a few other things, but it's too speculative right now to say," Mozayeni said.

Human testing

More studies are needed, and Mozayeni has joined Breitschwerdt and Maggi in the diagnostic company to oversee human testing.

"Certainly, the prevalence of Bartonella infection in people with chronic illness is higher than I would have ever guessed, but we still don't know what that means," Breitschwerdt said.

Among the biggest unknowns is how to treat people who have been infected. The effectiveness of antibiotics depends on which strain of Bartonella is at work, and with so many strains, treatments can be hit or miss.

Breitschwerdt said the family in his most recent study declined to comment about their experience. He said they were having difficulty finding a doctor.

"It is very difficult to find a physician who wants to see someone with a chronic illness that is poorly defined," he said, adding that many such patients often think they have Lyme disease, a tick-borne bacterial infection with similar symptoms - and stigma. "With an unexplained illness, it becomes problematic."



Read more: http://www.newsobserver.com/2010/05/21/ ... z0oqQf0kSj

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ma Syys 06, 2010 13:09

Linnuissa borrelia-bakteereita kantavia punkkeja.

Appl Environ Microbiol. 2010 Aug 20; [Epub ahead of print]
Co-existence of pathogens in host-seeking and feeding ticks within a single
natural habitat of Central Germany.

Franke J, Fritzsch J, Tomaso H, Straube E, Dorn W, Hildebrandt A.

Institute of Nutrition, Department of Food- and Environmental Hygiene,
Friedrich-Schiller-University, Jena, Germany; Medical University Laboratories,
Institute of Medical Microbiology, Friedrich-Schiller-University, Jena, Germany;
Federal Research Institute for Animal Health, National Referenc Center for
Tularemia, Jena, Germany.

The importance of established and emerging tick-borne pathogens in Central and
Northern Europe is steadily increasing. In 2007 we collected Ixodes ricinus
ticks feeding on birds (N=211) and rodents (N=273), but also host-seeking stages
(N=196) in a habitat in Central Germany. In order to find out more about their
natural transmission cycles, the ticks were tested for the presence of Lyme
disease borreliae, Anaplasma phagocytophilum, spotted fever group (SFG)
rickettsiae, Francisella tularensis, and babesiae. Altogether, 20.1% of 680
examinded ticks carried at least one pathogen. Bird-feeding ticks were more
frequently infected with Borrelia spp. (15.2%) and A. phagocytophilum (3.2%)
than rodent-feeding (2.6%; 1.1%) or questing ticks (5.1%; 0%). Babesia spp.
showed higher prevalences in ticks parasitizing on birds (13.2%) and
host-seeking ticks (10.7%) whereas ticks from small mammals were less frequently
infected (6.6%). SFG rickettsiae and F. tularensis were also found in ticks
collected off birds (2.1%; 1.2%), rodents (1.8%; 1.5%) and vegetation (4.1%;
1.6%). Various combinations of co-infections occurred in 10.9% of all positive
ticks, indicating interaction of transmission cycles.
Our results suggest that birds are not only important reservoirs for several pathogens but also act as vehicles for infected ticks and might therefore play a key role in the dispersal of tick-borne diseases.

http://eutils.ncbi.nlm.nih.gov/entrez/e ... md=prlinks
PMID: 20729315 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ke Loka 06, 2010 09:38


Itämeren linnuista löydettiin punkkeja jotka kantoivat yhtä tai useampaa taudinaiheuttajaa esim. borrelia-bakteereita, anaplasmaa, riketsioita, babesiaa. (Saksa 2010)


Med Vet Entomol. 2010 Sep 26; [Epub ahead of print]
Established and emerging pathogens in Ixodes ricinus ticks collected from birds
on a conservation island in the Baltic Sea.

Franke J, Meier F, Moldenhauer A, Straube E, Dorn W, Hildebrandt A.

Department of Food and Environmental Hygiene, Institute of Nutrition, Friedrich
Schiller University of Jena, Jena, Germany Medical University Laboratories,
Institute of Medical Microbiology, Friedrich Schiller University of Jena, Jena,
Germany.

Tick-borne pathogens such as Lyme borreliosis spirochaetes, Anaplasma
phagocytophilum, Rickettsia spp. and Babesia spp. cause a great variety of
diseases in animals and humans. Although their importance with respect to
emerging human diseases is increasing, many issues about their ecology are still
unclear. In spring 2007, 191 Ixodes ricinus (Acari: Ixodidae) ticks were
collected from 99 birds of 11 species on a bird conservation island in the
Baltic Sea in order to test them for Borrelia spp., A. phagocytophilum,
Rickettsia spp. and Babesia spp. infections. Identification of the pathogens was
performed by polymerase chain reaction (PCR), restriction fragment length
polymorphism and sequence analysis. The majority of birds with ticks testing
positive were European robins and thrushes. Borrelia DNA was detected in 14.1%,
A. phagocytophilum in 2.6%, rickettsiae in 7.3% and Babesia spp. in 4.7% of the
ticks. Co-infections with different pathogens occurred in six ticks (3.1%). The
fact that 11 ticks (five larvae, six nymphs) were infected with Borrelia afzelii
suggests that birds may, contrary to current opinion, serve as reservoir hosts
for this species. Among rickettsial infections, we identified Rickettsia
monacensis and Rickettsia helvetica. As we detected five Rickettsia spp.
positive larvae and two birds carried more than one infected tick, transmission
of those pathogens from birds to ticks appears possible.
Further characterization of Babesia infections revealed Babesia divergens and Babesia microti. The occurrence of Babesia spp. in a total of five larvae suggests that birds may be able to infect ticks, at least with Ba. microti, a species considered not to be transmitted transovarially in ticks. (c) 2010 The Authors. Medical and Veterinary Entomology (c) 2010 The Royal Entomological Society.

http://eutils.ncbi.nlm.nih.gov/entrez/e ... md=prlinks
PMID: 20868431 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ti Loka 19, 2010 14:23

Borrelia-bakteerin DNA:ta löydettiin punkkien ulosteesta (2010)

Vector Borne Zoonotic Dis. 2010 Oct 6; [Epub ahead of print]
Detection of Borrelia burgdorferi DNA in Tick Feces Provides Evidence for Organism Shedding During Vector Feeding.

Patton TG, Dietrich G, Gilmore RD.

1 Microbiology and Pathogenesis Activity, Division of Vector-Borne Diseases,
National Center for Emerging and Zoonotic Infectious Diseases , Centers for
Disease Control and Prevention, Fort Collins, Colorado.

Abstract Borrelia burgdorferi, the bacterium that causes Lyme disease, is
transmitted to a susceptible host by Ixodes spp. tick bites. However, there is
uncertainty whether B. burgdorferi are shed from ticks by the fecal route. In
this study, B. burgdorferi–infected ticks were fed on mice while confined
to a certain area of the skin by a capsule. During and after feeding, tick feces
were collected and placed in Barbour-Stoenner-Kelley (BSK)-II media for
cultivation and in sterile water for polymerase chain reaction (PCR) analysis.
Although none of the tested samples were culture positive for B. burgdorferi,
all but one of the fecal DNA samples from infected ticks were PCR positive.
These results indicated that B. burgdorferi were shed from feeding ticks during
defecation and suggest that the spirochetes did not remain viable once exposed
to the outside environment. This finding has important ramifications for
investigators interpreting B. burgdorferi–specific PCR results when
conducting tick transmission experiments.

http://eutils.ncbi.nlm.nih.gov/entrez/e ... md=prlinks
PMID: 20925527 [PubMed - as supplied by publisher]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ke Marras 24, 2010 14:29

"Minua hämmästyttä aina kun kuulen tämän kysymyksen. Miten kukaan voi epäillä etteikö borrelia-bakteeri tarttuisi ihmisestä toiseen seksuaalikontaktissa sillä bakteeria on löydetty kaikista elimistön nesteistä. Bakteeri tarttuu siinä kuin muutkin sukupuolitaudit."

Is Lyme Disease Transmitted Sexually?

http://healthnew.us/2010/11/is-lyme-dis ... exually-2/

I am always amazed when I hear this question. How can anyone doubt that if spirochetes are in body fluids, which they are, that Lyme would be transmitted like any other STD, syphilis for instance.



We know that conventional health care is trying to shut down the possibility of chronic Lyme, and deny any possibility of sexual transmission. There is a very clear effort to present the public with the notion that there isn?t anything to worry about Lyme disease; that it is very easy to diagnose and cure.


I had one Harvard teaching Infectious Disease Specialist tell me that he didn?t believe in chronic Lyme, and he was clearly upset by what he felt was a ?panic? caused by hypochondriacs that are always looking for a technical reason for why they don?t feel good. He said, ??one year it was Candida?everyone thought they were infected with Candida?another year it is another hysteria, well now it is Lyme.?


Main stream medicine also denies the possibility of babies becoming infected in the womb if the mother is infected. Yet Dr. Alan MacDonald, a specialist in neonatal pathology back in the early eighties, studied and collected an immense collection of clear evidence showing babies ? some stillborn and some who died soon after birth ? all from Lyme disease.


The world wasn?t ready for the truth when he presented his evidence in Vienna at the ?Second International Symposium on Lyme Disease and Related Disorders.? The process he used for proving the presence of spirochetes was innovative and difficult for the scientists to accept.

It would require them to cross over into the dark and terrifying realm of a runaway infection that these slides pointed to. And for the most part, twenty years later, the medical main stream is still looking the other way and ignoring the thousands upon thousands of suffering infected patients who are crying for help.


The day is sure to come when this tick-borne infection is understood better. But in the meantime, there are very few doctors willing to risk the persecution and financial risk of treating Lyme disease. Doctors are being sued not by their unhappy patients, but by other doctors who choose to stay blind to the emerging truth.


Entrenched and conservative medical practitioners say Lyme cannot be transmitted sexually, however, cutting edge scientists are proving the opposite.Alzheimer?s Autism, MS, Rheumatoid Arthritis, Heart disease, psychiatric conditions and many other horrible diseases are being shown to involve Lyme disease as the cause in increasing cases.

So when you look to basic biology and study how infections are passed; it takes more faith to believe Lyme is not transmitted sexually than that it is

How can it be proven? That remains the problem.

Jenna Smith is the author of the novel ?The Goddess of Sumer? and numerous articles on health and fitness. Jenna?s goal is to help people discover cutting edge strategies for healing disease and attaining optimum health. Discover your miracle body at: http://www.Miracle-Body.com and http://www.LymeDiseaseResource.com

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ti Maalis 01, 2011 12:09

Borrelia-bakteerin voi saada suun kautta. Hiirille annettiin suuhun borrelia-bakteereita. Kaikille kymmenelle hiirelle kehittyi vasta-aineita, yhdeltä hiireltä bakteereita löytyi verestä ja kuudelle ilmaantui oireita; raajojen heikkoutta, ruokahaluttomuutta, turkin pörröisyyttä, haluttomuuta liikkua jne. Tutkimuksen mukaan hiiret voivat saada borreliatartunnan suun kautta ja tartuttaa bakteerin myös terveisiin punkkeihin.

Am J Trop Med Hyg. 1987 Mar;36(2):402-7.
Oral infection of Peromyscus maniculatus with Borrelia burgdorferi and subsequent transmission by Ixodes dammini.

Burgess EC, Patrican LA.
Abstract

We determined if deer mice (Peromyscus maniculatus) could be infected by Borrelia burgdorferi and develop sufficient spirochetemia to infect larval Ixodes dammini. Ten P. maniculatus were infected orally with 0.05 ml phosphate buffered saline containing approximately 400 B. burgdorferi. On days 21 or 28 after infection (AI) larval I. dammini were fed on the deer mice. Each of the P. maniculatus developed antibodies (up to 7 log2) to B. burgdorferi and B. burgdorferi was isolated from the blood of 1 deer mouse on day 51 AI. Nymphs resulting from these larvae were then allowed to feed on 10 uninfected P. maniculatus. All 10 of these tick-infected P. maniculatus developed antibodies (up to 7 log2) to B. burgdorferi, and B. burgdorferi was isolated from the blood of 1 of the 10 P. maniculatus 15 days after tick feeding and from the pooled organs of another of the tick-infected P. maniculatus.

Six of the orally infected P. maniculatus developed clinical signs including ruffled hair coat, inappetence, reluctance to move, and lameness in the rear legs. All P. maniculatus tissues were grossly and histologically normal on necropsy.

These findings show that P. maniculatus are susceptible to oral infection and develop sufficient spirochetemias to infect I. dammini larvae.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ke Touko 18, 2011 09:47

Kantasolu-, munuais-, ja sydänsiirron saaneet henkilöt saivat borreliatartunnan.

http://cid.oxfordjournals.org/content/44/6/857.full

Chochon F, Kanfer A, Rondeau E, Sraer JD. Lyme disease in a kidney transplant recipient. Transplantation 1994;57:1687-8.

Habedank D, Hummel M, Musci M, Ruhlke A, Hetzer R. Lyme carditis 11 years after heart transplantation: a case report. Transplantation 2003;75:2156-7.
CrossRefMedlineWeb of Science.


Rodriguez M, Chou S, Fisher DC, De Girolami U, Amato AA, Marty FM. Lyme meningoradiculitis and myositis after allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2005;41:e112-4.


Zoonoses in Solid-Organ and Hematopoietic Stem Cell Transplant Recipients

1. Camille N. Kotton

+ Author Affiliations

1.
Transplant and Immunocompromised Host Section, Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts

1. Reprints or correspondence: Dr. Camille N. Kotton, Transplant and Immunocompromised Host Sect., Infectious Diseases Div., Massachusetts General Hospital, 55 Fruit St., Cox 5, Boston, MA 02114 (ckotton@partners.org).


Next Section
Abstract

Numerous reports exist of the transmission of zoonoses to humans during and after solid-organ and hematopoietic stem cell transplantation. Donor-derived infections of numerous etiologies, including West Nile virus infection, Chagas disease, toxoplasmosis, rabies, lymphocytic choriomeningitis virus infection, and infection due to Brucella species have been reported. Most zoonoses occur as a primary infection after transplantation, and immunocompromised patients are more likely to experience significant morbidity and mortality from these infections. Risks of zoonotic infection in the posttransplantation period could be reduced by patient education. Increased recognition of the risks of zoonoses, as well as the advent of molecular biolog-based testing, will potentially augment diagnostic aptitude. Documented zoonotic infection as it affects transplantation will be the primary focus of this review.

Zoonotic illnesses represent a significant risk to patients undergoing solid-organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT). Numerous reports exist of the transmission of zoonotic infection at the time of transplantation, either with the allograft or with blood products, as well as in the posttransplantation period, via the usual methods of transmission. The studies of zoonoses and transplantation-associated infectious diseases are evolving fields that are receiving increased recognition. Of the 1407 organisms that have been identified as human pathogens, 58% are zoonotic and are twice as likely as other pathogens to be in the ?emerging? category [1]. The population of immunocompromised hosts is also increasing; as the annual number of transplantations that are performed increases, transplant recipients are living longer [2], more-powerful immunosuppressive agents are being administered, and tools for the management of chronic graft-versus-host disease are improving.

Because numerous reviews of the effects of zoonoses on the general human population have been written, this review will primarily focus on documented zoonotic infection involving SOT and HSCT (excluding corneal and musculoskeletal grafting). Although much concern has been registered regarding the risk of zoonosis transmission with xenotransplantation (i.e., the transplantation of organs from animals to humans) [3], because this is not currently clinical practice, this will not be covered in this article. Cases described herein were found in reports in English-language journals via a search of the Medline database, using the search term ?transplant? along with the name of the genus or syndrome. The defining criteria for zoonoses that are covered herein, as previously defined [4], include pathogens that have a nonhuman vertebrate reservoir, entail transmission from animals to humans, and have a recognized infectious disease syndrome in susceptible humans. Infections that do not involve a nonhuman vertebrate intermediary, such as malaria and dengue fever, will not be included. Transmission may occur directly (via contact with infectious animals or their secretions), via a nonvertebrate vector, or indirectly (via food, water, or a shared environment) [5]. Significant zoonoses are covered in the text and in table 1, and rarer or les-commonly reported zoonoses are also included. Live viral vaccines are also discussed. In general, the incidence of zoonotic illness is not known to be higher in transplant recipients, although the related morbidity and mortality may be higher among this population.
Table 1
View larger version:

* In this page
* In a new window

* Download as PowerPoint Slide

Table 1

Zoonotic pathogens in transplant recipients.

Population shifts resulting from immigration and travel are occurring throughout the world. Approximately 10% of the population of the United States was born in a foreign country [126], and more Americans than ever before are traveling internationally. These are both factors that may augment the risk of donor-derived infections, particularly the more latent ones (i.e., infections due to Mycobacterium tuberculosis, Trypanosoma cruzi, parasites, and others). The rise in the number of SOTs performed in developing countries (some of which are performed in patients who return to industrialized countries after transplantation) may create another reservoir for unusual infections.

Immunocompromised patients may have atypical presentations of infectious diseases, and the diagnosis may be elusive, especially for some of the less common zoonoses. Many zoonotic illnesses involve specialized diagnostic tests. Transplant recipients may be slow to evolve a serologic response, which may delay or deter diagnosis, especially if their overall level of immunosuppression is high. The use of molecular biology-based tests, when available, may augment our diagnostic capacity in this population, similar to the contribution from nucleic acid amplification testing of the blood supply for West Nile virus (WNV) [127]. If donor-derived infection is a possibility, donor samples (e.g., serum, tissues, blood vessels, and autopsy specimens) should also be tested. Increasing recognition of the risks of zoonotic infection will potentially augment diagnostic aptitude.

Donor-derived infection. Zoonotic infection in the peritransplantation period can be transmitted via the organ or stem cell allograft, as well as through the transfusion of blood products. Both acute and latent infections (such as Chagas disease or toxoplasmosis) may be transmitted via an allograft. Risk factors for zoonotic illness may be overlooked during the standard screening process. Subclinical or atypical illness, such as was observed in the cases of lymphocytic choriomeningitis transmission [74] and rabies transmission [78, 79], may result in imperfect screening and subsequent transmission of infection. WNV infection [83], Chagas disease [124, 125], and toxoplasmosis [122, 123] have also been transmitted during SOT. WNV and Brucella infections have been transmitted in HSCT allografts. After transplantation, the clinical syndromes associated with these infections can be protean and may even be mistaken for transplant rejection (e.g., hepatitis after liver transplantation). When there is concern regarding donor-derived infection, both donor and recipient samples must be examined. Novel transmission should be promptly reported, because increased recognition may reduce subsequent infections.

Recipient-derived infection. Recipients in whom an infection is incubating at the time of transplantation and who subsequently experience profound immunosuppression in the peritransplantation period may develop severe infection. The majority of zoonoses are acquired after transplantation. Certain epidemiological risk factors increase the risk for acquisition of zoonoses, including occupational exposure (e.g., in veterinarians, pet store employees, farmers, slaughterhouse workers, landscapers, and forestry workers), pet ownership, hobbies (e.g., hunting), and travel. These exposures should be limited or possibly avoided, especially during the first 6 months after transplantation or other significant immunosuppression [128]. Perhaps more insidious are the risks that are more common and less obvious-that is, contaminated drinking water and food, walking in the woods or wading in the ocean, visiting a petting zoo, or exposure to any house pets.
Previous SectionNext Section
Pathogen-Specific Infection

The following sections include both donor- and recipient-derived infections, with a focus on the characteristics of specific pathogens, by category.
Bacterial Infection

Enteric infection. Bacterial enteric pathogens are common etiologies of foodborne and waterborne illnesses, and may represent contamination from farm animals or other vertebrate animals; they may also be directly transmitted from animals to humans. Transplant recipients have much higher rates of bacteremias due to Salmonellae species-ranging as high as 70%, compared with 3%?4% in normal hosts-and a higher risk of a metastasic focus of infection [129, 130]; this is true for other enteric pathogens, as well. Campylobacter species are another group of common zoonotic enteric pathogens in patients who undergo SOT or HSCT. As in other immunocompromised hosts, transplant recipients may have trouble completely clearing a Campylobacter jejuni infection [131]. Asymptomatic, prolonged Campylobacter species bacteremia in the peri-HSCT period has been documented [132]. Yersinia species can also cause invasive disease with bacteremia in SOT [62, 63]. Noncholera Vibrio species can cause fulminant illness in transplant recipients, with gastroenteritis, bacteremia, or skin and soft-tissue infections [57?60]; environmental flooding increases the risk of illness due to Vibrio species, as was observed after Hurricane Katrina [133]. Recent increases in drug-resistant bacteria, sometimes related to the use of antibiotics in animal feed (such as with multidrug-resistant Salmonella species), are especially concerning.

Pulmonary infection. Bordetella bronchiseptica, the etiologic agent of ?kennel cough? in dogs, has caused serious respiratory illness in patients who undergo pediatric lung transplantation [17], heart transplantation [18], and HSCT [19, 20]. Several of these case patients had pet dogs. The?kennel cough? live vaccine, which contains a mixture of parainfluenza virus and B. bronchiseptica, has the potential to cause human B. bronchiseptica infection [134]. Rhodococcus equi has been increasingly documented as a pulmonary pathogen in transplant recipients [135], as well as an agent of unusual infection, including cerebral infection in a heart transplant recipient [52], pericarditis in a kidney transplant recipient [136], and vertebral osteomyelitis in a liver transplant recipient [53]. Cases of tularemia (due to Francisella tularensis infection) after both HSCT and renal transplantation have been reported [33,34?35].

Systemic and other infections. There have been numerous reports of ehrlichiosis reported in transplant recipients, including human monocytic ehrlichiosis due to Ehrlichia chaffeensis infection in liver [26,27?28], kidney [29, 30], and lung [31] transplant recipients and several cases of human granulocytic ehrlichiosis due to Anaplasma phagocytophilum infection in kidney [6, 7] and pancreas [8] transplant recipients. Rickettsia rickettsii infection (Rocky Mountain spotted fever) has been described after heart transplantation [55], and Rickettsia conorii infection has been reported after liver transplantation [56]. Borrelia burgdorferi infection (Lyme disease) has been described in the literature in transplant recipients, including 1 kidney transplant recipient [14], 1 heart transplant recipient (with carditis) [15], and 1 allogeneic hematopoietic stem cell transplant recipient [16].

Bartonella henselae infection has been described after heart [9] and kidney transplantation [10,11,12?13], with variations in the manifestation of infection that include hemophagocytosis [137], closely associated acute allograft rejection [10], peliosis hepatis [138], peliosis hepatitis and hepatorenal syndrome [139], pulmonary nodules [140], and osteomyelitis [141]. Brucella species infection has been reported after kidney transplantation [21, 22] and as a donor-derived infection during HSCT [23], mostly in areas of endemicity. Live, attenuated Brucella animal vaccine has been linked to human disease and has the potential to cause disease in immunocompromised hosts [134]. Listeria monocytogenes infection has been well described in patients who undergo SOT and HSCT [37, 38, 41], including the rare clinical manifestations of tricuspid valve endocarditis with septic pulmonary emboli [39], epididymitis and orchitis [40], and skin infection with cerebritis and hemophagocytosis [42]. A small number of cases of human tuberculosis are due to Mycobacterium bovis infection, also known as zoonotic tuberculosis-an opportunistic infection in immunocompromised hosts [142]; M. bovis infection of the urinary tract has been documented after kidney transplantation [43].

Skin and soft-tissue infection. Numerous reports exist of Mycobacterium marinum infection in patients who undergo SOT, sometimes after a patient's exposure to fish [45,46,47?48]. Erysipelothrix species-related endocarditis that occurs after aquarium contact has been reported in a kidney transplant recipient [21]. Capnocytophaga species infections are usually caused by the organisms that are found in the oral flora of immunosuppressed hosts [143, 144] and not by the zoonotic species (i.e., Capnocytophaga canimorsus and Capnocytophaga cynodegmi, which have not been reported in transplant recipients); similarly, Pasturella species infections have not been reported in this population.
Fungal Infection

Cryptococcus species is the third most common cause of invasive fungal infection in organ transplant recipients after Candida species and Aspergillus species [64]. Birds and their droppings are the most commonly perceived risk. A 72-year-old kidney transplant recipient who owned a pet cockatoo developed cryptococcal meningitis that was believed to be acquired from the cockatoo, because isolates obtained from the patient and the bird had identical biochemical profiles, the same monoclonal antibody immunofluorescence patterns, and indistinguishable patterns on RFLP analysis and karyotyping [65]. Some authors suggest that immunocompromised hosts should not keep cockatoos, given their association with cryptococcosis [145].

Sporotrichosis due to Sporothrix schenckii infection can be connected to animal contact, especially contact with cats [146], and has caused severe, recurrent disease in a kidney transplant recipient [71]. Dermatophytes are common in both regular and exotic animals and can cause both superficial and invasive disease in humans [145, 147]. Trichophyton mentagrophytes, a zoonotic dermatophyte, was the most common superficial dermatophyte observed after kidney transplantation in 1 series [67]. The zoonotic dermatophyte Microsporum canis has caused invasive cutaneous infection after liver transplantation [69], relapsing tinea capitis after kidney transplantation [68], and dermatophytic granuloma with erythematous pustules and papules in a heart-lung transplant recipient [70].
Viral Infection

Viral zoonoses are numerous [4] and are common among the emerging zoonotic pathogens [148]; however, the vast majority have not been reported among transplant recipients. WNV infection is one of the more commonly reported viral zoonoses in transplant recipients. It may be donor derived, transfusion related, or normally acquired, and it carries a high morbidity and mortality. The risk of meningoencephalitis in a transplant recipient infected with WNV is estimated to be 40%-much higher than in normal hosts [84]. A recent case of WNV infection was confirmed in 3 of 4 recipients of organs transplanted from a single donor; 2 recipients subsequently experienced neuroinvasive disease, 1 recipient developed asymptomatic WNV infection, and a fourth recipient was apparently not infected [83]. Numerous additional reports exist of transmission following SOT and HSCT.

Rabies is rarely observed after SOT. In a recent case in Arkansas and Texas, 1 donor transmitted lethal rabies infection to 5 recipients [78], and in another case in Germany, 3 patients who underwent SOT developed neurological symptoms and died [79]. Live rabies vaccine for use in wildlife has caused human disease and presents a potential risk to transplant recipients who come in direct contact with it [134].

Yellow fever presents a risk to transplant recipients who are traveling to or whose donors are from areas of endemicity for the disease, although instances of infection in this manner have not been documented. Use of the live attenuated vaccine should be avoided in immunocompromised hosts [149]. Although a few immunosuppressed travelers have tolerated the vaccine (e.g., those in the early stages of HIV infection or who have a distant history of hematological malignancy [150,151?152]), complications, including death, have been reported [153].

A recent report documented the spread of lymphocytic choriomeningitis from 2 asymptomatic organ donors to 8 organ transplant recipients, 7 of whom died [74]. The severe acute respiratory syndrome (SARS) virus caused significant disease in patients who underwent HSCT and recipients of liver and kidney transplants [80,81?82]. Infection with parapoxvirus, the agent responsible for orf (ecthyma contagiosum) and milker's nodules, has been observed after HSCT (in these cases, the infection was transmitted by cows) [77] and kidney transplantation [75, 76].
Parasitic Infection

Numerous zoonotic parasites have been shown to cause disease in transplant recipients. Bloodborne and organborne infection may be transmitted at the time of transplantation; enteric pathogens are less likely to be transmitted during the peritransplantation period, although this could potentially occur with intestine and liver transplantation. Depending on the location and circumstances, toxoplasmosis, babesiosis, Chagas disease, and leishmaniasis are among the more common parasite-related infections observed in transplant recipients.

Toxoplasma gondii infection can be caused by primary infection transmitted by an allograft, as well as by reactivation disease. T. gondii allograft transmission is classically associated with heart transplantation, in which case can persist as a latent infection in the myocardium, although it has been transmitted through transplantation of other organs. Among patients who undergo HSCT, toxoplasmosis occurs in 0.3%?7.6% of cases, with higher rates in countries where toxoplasmosis is more prevalent and among patients with graft-versus-host disease [122]. The use of trimethoprim-sulfamethoxazole for post-SOT prophylaxis has decreased the risk of toxoplasmosis [154, 155]. In a recent review of 52 noncardiac SOT-related cases of toxoplasmosis, 86% of patients developed disease within 90 days of transplantation; of these patients, 42% had primary infection, 21% had reactivation or reinfection, and 37% had cases that could not be determined [123]. Classically, non-allograft-associated transmission was linked to the ingestion of either uncooked or undercooked meat containing viable tissue cysts or oocysts from the feces of infected cats; a report of an outbreak of toxoplasmosis associated with unfiltered municipal drinking water contaminated by felid waste [156] reiterates the importance of clean drinking water for transplant recipients.

Babesiosis has caused severe disease with hemophagocytosis and pancytopenia in asplenic renal transplant recipients [86, 87]. Babesia species have been transmitted through peritransplantation blood transfusions [85, 88]; in the United States, there has been a sharp increase in the number of transfusion-transmitted infections of Babesia species [157], suggesting a potential for increased infection in this generally heavily transfusion-dependent population.

Trypanosoma cruzi, the etiologic agent of Chagas disease, has been transmitted during SOT [124, 125], as well as during blood transfusions [158,159?160], and infection can also reactivate after transplantation [161]. Although most commonly associated with heart transplantation, other organs (including liver, kidney, and pancreas) may transmit T. cruzi as well [124, 125]. In a recent survey of 404 deceased organ donors in Southern California, where 25% of organ donors are of Hispanic ethnicity, 6 donors (1.5%) were found to be initially reactive by EIA, and 1 donor (0.25%) was found to have confirmatory T. cruzi antibodies, suggesting a beneficial role for the screening of transplant donors [162].

Leishmania species cause significant disease in immunocompromised hosts and could theoretically be transmitted via an allograft or a blood transfusion [163, 164]. Visceral disease (kala azar) is the most common manifestation after SOT, with 57 cases reported in the literature [105]. Patients who undergo HSCT appear to be rarely affected [116]. Cutaneous leishmaniasis has been reported in a handful of cases of SOT, some with concomitant visceral involvement [106,107,108,109?110]; mucosal disease has also been reported infrequently [111,112,113,114?115].

Enteric parasites are more likely to cause disease after transplantation. Microsporidia can cause infection in immunocompromised hosts; the most commonly reported is Enterocytozoon bieneusi infection following a transplantation [117]. Pulmonary infection has been described following allogenic HSCT [118, 119], and disseminated disease was documented postmortem in a kidney-pancreas transplant recipient [117]. Cryptosporidium parvum infection is especially common in patients who undergo SOT in the developing world [95]. Cryptosporidium species can also cause biliary disease and may play a role in some cases of otherwise unexplained cholangiopathies in liver [93] and kidney [96] transplant recipients. Disseminated Cryptosporidium species disease and related death have been described in liver [94] and stem cell transplant [97] recipients. Severe alveolar echinococcosis of the liver due to Echinococcus species has been successfully cured by liver transplantation [98,99,100?101], although there are risks of extrahepatic infection and potential echinococcal dissemination. Heart transplantation has been successfully performed in a patient who had hepatic echinococcosis [102].
Previous SectionNext Section
Recommendations for Pet Owners

Companion animals provide numerous benefits, along with some zoonotic risk. Discussions about pet ownership should optimally occur prior to transplantation. Pets may enhance health and well being, and many people would welcome advice and support to enable them to reconcile or manage pet ownership [165]. Guidance in pet choice can decrease zoonotic risk [128, 166]. In general, mature pets from reputable sources provide lower zoonotic risk. Fish are the pets least likely to be associated with illness (especially if aquarium cleaning by the transplant recipient is avoided). Animals to avoid as pets include reptiles (lizards, snakes, and turtles), baby chicks and ducklings, and exotic pets (chinchillas and monkeys); contact with stray and wild animals should also be avoided [128]. The individual risk of acquiring an infection from an animal is hard to calculate, and little work has been done in this field. In a survey of adult cats in Colorado, 13% were found to harbor zoonotic intestinal pathogens [167], and 41% of kittens in New York harbored a zoonotic agent [168].

Careful handwashing after any animal contact is imperative. Routine veterinarian care, with frequent stool examination for parasites, administration of routine vaccines, and evaluation when an animal is sick (especially with diarrhea), can reduce the risks of pet ownership to a transplant recipient. Immunocompromised hosts should avoid direct contact with any live viral vaccines that are administered to their pets and animals [134]. In addition, contact with animal excreta or saliva should be avoided. Good quality animal food should be given (not raw eggs or meat), and animals should not drink toilet bowl water. Humans should avoid flea and tick bites, as well as animal-related scratches and bites. Because small children are more likely to be bitten by pets and are less likely to practice good hand hygiene, pet ownership should potentially be deferred for very young transplant recipients. Pet therapy should potentially be avoided in hospitalized patients during the immediate posttransplantation period, when the patient is most immunosuppressed. The US Centers for Disease Control and Prevention's report on ?Pets and Organ Transplant Patients? [70] provides both general and animal-specific guidelines.
Previous SectionNext Section
Conclusions

Zoonotic infections are increasingly being recognized in transplant recipients, likely because of a greater number of transplantations, improved diagnostic testing in transplant recipients, and an augmented recognition of zoonoses.With increases in such factors as immigration, foreign travel, and exotic pet ownership, there may also be increased exposures to both donors and recipients. Risk of donor-derived infection may be reduced by improving the screening of donors, both through analysis of exposure history and through better molecular biology-based diagnostic testing. Given the current diversity and extent of animal contact, travel, occupational experience, and vector contact, a careful exposure history should be systematically ascertained in all transplant donors (when possible) and recipients. Education of transplant recipients before and after transplantation regarding zoonotic risks may further decrease zoonotic infection in this population.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ke Touko 18, 2011 22:07

- Weber ym (1988): Vastasyntyneellä Borrelioosi vaikka äiti sai antibioottihoidon raskauden aikana.
- Nadal ym (1989): 1400 äitiä. 12:lla äidillä borrelia vasta-aineet koholla, samoin jokaisella vastasyntyneellä. Lapsilla esiintyi erilaisia oireita esim. rytmihäiriöitä, isopäisyys, lihasten velttoutta, voimakasta keltaisuutta jne.
http://resources.metapress.com/pdf-prev ... ze=largest
- Williams ym (2008) http://onlinelibrary.wiley.com/doi/10.1 ... x/abstract
5000 äitiä. Endeemisillä alueilla asuvien äitien riski sairastua Borrelioosiin on 5 - 20x. Lapsilla esiintyy muita enemmän epämuodostumia esim. sydämessä, vesipäisyyttä, ylimääräisiä sormia ja verisuoniluomia.


Maternal Lyme disease and congenital malformations: a cord blood serosurvey in endemic and control areas

1. C. L. Williams1,*,
2. B. Strobino2,
3. A. Weinstein2,
4. P. Spierling1,
5. F. Medici3

Article first published online: 7 APR 2008

DOI: 10.1111/j.1365-3016.1995.tb00148.x
Summary. This report describes a cohort study of over 5000 infants and their mothers who participated in a cord blood serosurvey designed to examine the relationship between maternal exposure to Lyme disease and adverse pregnancy outcome. Based on serology and reported clinical history, mothers of infants in an endemic hospital cohort are 5 to 20 times more likely to have been exposed to B. burgdorferi as compared with mothers of infants in a control hospital cohort. The incidence of total congenital malformations was not significantly different in the endemic cohort compared with the control cohort, but the rate of cardiac malformations was significantly higher in the endemic cohort [odds ratio (OR) 2.40; 95% confidence interval (CI) 1.25,4.59] and the frequencies of certain minor malformations (haemangiomas, Polydactyly, and hydrocele), were significantly increased in the control group. Demographic variations could only account for differences in the frequency of Polydactyly. Within the endemic cohort, there were no differences in the rate of major or minor malformations or mean birthweight by category of possible maternal exposure to Lyme disease or cord blood serology. The disparity between observations at the population and individual levels requires further investigation. The absence of association at the individual level in the endemic area could be because of the small number of women who were actually exposed either in terms of serology or clinical history. The reason for the findings at the population level is not known but could be because of artifact or population differences.
http://onlinelibrary.wiley.com/doi/10.1 ... x/abstract

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ma Touko 30, 2011 08:13

Meidän Perhe lehden keskustelupalstalla vuonna 2007

"Miestä puri hirvikärpänen muutama vuosi sitten ja paise vain jatkoi kasvamistaan. Lopulta sain hänet suostumaan lääkäriin, kun paiseen ympärille alkoi muodostua rangas. Lääkäri epäili borrelioosia ja määräsi vahvan antibioottikuurin tosin vasta pyydettyään ensin toisen lääkärin ihailemaan jälkeä. Kumpikaan heistä ei ollut koskaan kuullut hirvikärpäsen levittävän borrelioosia, mutta jälki oli aivan selvä ja mies näki mikä häntä puri. "
http://www.meidanperhe.fi/keskustelut/a ... vikarpanen_

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ma Touko 30, 2011 10:36

unkit lääketieteen historiassa

Arno Forsius

http://www.saunalahti.fi/arnoldus/punkit.html

Punkit ovat hämähäkkieläinten lahko, johon kuuluu suuri määrä eri lajeja. Monet lajit ovat loisia tai puoliloisia ja ne elävät kasvien tai eläinten nesteistä. Useimmat punkit ovat hyvin pienikokoisia, harvoin yli 2 mm:n mittaisia, ja lähinnä vain puutiaisten alalahkossa on suurempia lajeja, suurimmat niistä noin 30 mm:n mittaisia.

Suuri joukko punkeista on tuhoeläimiä, jotka haittaavat muiden eläinlajien ja kasvien elämää. Lääketieteen kannalta ajatellen eräät punkit aiheuttavat sairauksia, mm. loistauteja ja allergioita, mutta ennen kaikkea useat punkit toimivat tauteja aiheuttavien mikrobien siirtäjinä eli vektoreina sairaista eläimistä ja ihmisistä terveisiin yksilöihin.

Punkkien suuren lajirunsauden ja elintapojen moninaisuuden sekä niiden levittämien sairauksien suuren määrän vuoksi tässä kirjoituksessa käsitellään aihepiiriä vain pääpiirteittäin ja lähinnä ihmisen kannalta.

Punkit taudinaiheuttajina

Punkkien aiheuttamat loissairaudet ovat yleensä ihotauteja, mutta niiden lisäksi tunnetaan joitakin sisäelinten punkkitauteja. Eräiden punkkien eritteet ovat voimakkaasti allergisoivia ja voivat aiheuttaa kiusallisia sairausoireita.

Punkkien merkitys mikrobitautien siirtäjinä eli vektoreina on ollut viime aikoina esillä varsinkin Lymen tautia koskevien kirjoitusten yhteydessä. Puutiainen on väännös sanasta puutäi. Kansa nimittäin uskoi aikaisemmin, että ne olivat puista tarttuvia täitä. Suomen kielessä "täin tarhalla" tarkoitetaan nykyään savipuolta, pyöreinä läiskinä esiintyvää ihon sienitautia. On hyvin mahdollista, että "täin tarhan" nimitys on syntynyt alunperin puutiaisen eli puutäin puremapaikan ympärille kehittyvästä rengasmaisesta erythema migrans -ihottumasta, joka on usein edellä mainitun Lymen taudin ensimmäinen ilmentymä.

Punkkien kyky toimia tartunnan siirtäjinä kohdistuu muutamaan alkueläimeen, tiettyihin bakteereihin, kuten erityisesti Borrelia - spirokeettoihin, ja useihin riketsioihin sekä joihinkin viruksiin.

Punkkeja oli epäilty tautien aiheuttajiksi silloin tällöin parin sadan vuoden aikana. Ranskalainen Dupré oli jo vuonna 1809 arvellut Argas persicus -nimisen punkin olevan syynä persialaisen toisintokuumeen tarttumiseen. Tautia nimitettiin "Mianan punkkikuumeeksi" Mianeh-kaupungin mukaan, joka sijaitsi Persiassa (nyk. Iranin alue) Teheranin ja Täbrisin välillä. David Livingstone kuvasi Afrikassa jo vuonna 1857 taudin "human tick disease", joka tunnetaan nykyään nimellä "endemic relapsing fever".

Punkkien ja tartuntatautien yhteyden todisti vuonna 1889 ensimmäisenä yhdysvaltalainen patologi Theobald Smith (1859?1934) yhdessä Frederick Lucius Kilbornen (1858?1925) kanssa. He nimittäin osoittivat, että Boophilus bovis -nimiset puutiaiset tartuttivat Yhdysvalloissa laitumilla oleviin lehmiin Texas fever -tautia.

Koska sukukypsät naaraspuutiaiset imivät verta vain yhdestä eläimestä, ne eivät voineet siirtää tautia suoraan sairaista eläimistä terveisiin. Smith ja Kilborne selvittivätkin jatkotutkimuksissaan, että taudinaiheuttajat siirtyivät tautia kantavissa naaraspunkeissa niiden jälkeläisiin ja vasta niistä toisiin lehmiin. Smithin ja Kilbornen tutkimukset vuosina 1889?1893 olivat sysäyksenä myös malarian, keltakuumeen ja muiden hyönteisten levittämien tartuntatautien selvittämiselle. Toisaalta on otettava huomioon myös mahdollisuus, että punkit ovat saaneet tautia aiheuttavan mikrobin elimistöönsä jo nymfivaiheensa aikana, kun ne ovat käyneet imemässä verta tautia kantavista eläimistä.

Yhdysvaltalainen E. E. Maxey tutki vuonna 1899 Rocky Mountain spotted fever -nimellä tunnettua tautia, jota esiintyi Yhdysvaltojen Idahossa. Wilson ja Chowning olettivat vuonna 1902, että puutiaiset levittivät tautia ja että tauti oli peräisin jostakin eläimestä. Sen jälkeen Howard T. Ricketts alkoi vuonna 1906 tutkia asiaa tarkemmin. Hän osoitti, että taudinaiheuttaja voitiin löytää puutiaisista ja että se siirtyi myös niiden seuraaviin sukupolviin. Ricketts todisti vuonna 1909, että Dermacentor andersonii -puutiainen toimi taudin siirtäjänä. Taudin aiheuttaja sai sittemmin nimen Rickettsia rickettsi ja koko bakteerisuku nimen rickettsia, suom. riketsia.

Marchoux ja Salimbeni osoittivat vuonna 1903, että Argas-punkit toimivat lintujen spirokeettasairauden siirtäjinä. Samana vuonna osoittivat Joseph Everett Dutton (1877?1905) ja Todd sekä samoin vuonna 1904 Robert Koch ja Milne, että Ornithodorus moubata punkit levittivät Afrikassa esiintyvää endeemistä toisintokuumetta. Sergent ja Foley osoittivat vuonna 1908, että eurooppalainen epideeminen toisintokuume leviää vaatetäiden välityksellä. Vaatetäissä esiintyvät toisintokuumeen aiheuttajat eivät siirry täiden jälkeläisiin lisääntymisen yhteydessä. Koch arveli jo vuonna 1905, että punkit voisivat toimia epideemisen toisintokuumeen siirtäjinä eläimistä ihmiseen, mutta olettamusta ei ole voitu varmistaa.

Tärkeä punkkeihin liittyvä taudinaiheuttajien ryhmä on riketsiat. Jopa ratkaisevasti maailman tapahtumiin menneisyydessä vaikuttanut pilkkukuume eli typhus exanthematicus ei ole kuitenkaan punkkien vaan vaatetäiden levittämä sairaus.

Espanjalainen Cortezo arvelikin jo vuonna 1903, että pilkkukuume tarttuisi täiden välityksellä. Tämä pystyttiinkin todistamaan vuonna 1910, jolloin tauti saatiin tarttumaan täiden avulla ja jolloin H. W. Ricketts ja Wilder löysivät täiden suoliston epiteelistä bakteerin kaltaisia muodostumia. von Prowazek vahvisti havainnot vuonna 1915 ja taudin aiheuttajalle annettiin nimi Rickettsia prowazeki. Sen "varastoeläimenä" luonnossa on ainakin pohjoisamerikkalainen siipiorava ja levittäjänä sen täi. Pilkkukuumeen kohdalla ei ole myöskään löydetty todisteita siitä, että punkit voisivat toimia jonkin eläinlajin kautta tartunnan siirtäjinä ja epidemian laukaisijoina.

Punkkien ryhmiä ja lajeja

Naaraspuoliset punkit munivat munia, mutta eräillä punkeilla munista kehittyvät toukat kuoriutuvat jo ennen munimista. Toukista kehittyy täysikasvuisia punkkeja useamman nymfivaiheen kautta, joita on toisilla lajeilla vain yksi, joillakin jopa kahdeksan tai kymmenen. Täysikasvuisilla punkeilla on neljä jalkaparia, mutta nymfeillä niitä vain kolme paria.

Punkit (ja puutiaiset) (Acarina) jaetaan tavallisesti kolmeen lahkoon: I Opilioacariformes (Notostigmatae) eli lukkipunkit, II Parasitiformes (Acarina anactinochaeta) eli kilpipunkit ja III Acariformes (Acarina actinochaeta) eli (aito)punkit. Lajeja niissä on yhteensä ehkä noin 500 000 lajia, joista on luokiteltu noin 35 000.

I: Opilioacariformes (lukkipunkit) luokka on vähälajinen ja käytännössä merkityksetön. Siihen kuuluu vain 1 suku, jossa on 12 lajia

II: Parasitiformes (kilpipunkit) luokka jaetaan kolmeen alalahkoon: A Holothyrina (Tetrastigmata), B Gamasina (Mesostigmata) ja C Ixodina (Metastigmata).

II A: Holothyrina (Tetrastigmata) -alalahkoon kuuluu 3 sukua, joissa on yhteensä 13 lajia. Alalahko on vähälukuinen ja vähämerkityksellinen.

II B: Gamasina (Mesostigmata) alalahkoon kuuluu noin 76 sukua ja noin 5050 lajia. Tähän alalahkoon kuuluvat mm. heimot Parasitidae (kuoriaispunkit), Phytoseiidae (petopunkit) ja Laelapidae (täipunkit).

Laelapidae- eli täipunkkeihin kuuluvat mm. Dermanyssidae -lintupunkit, joista Harpyrynchus tabescentium voi loisia myös ihmisessä. Liponyssus bacoti (trooppinen rottapunkki) saattaa käyttää ravinnokseen myös ihmistä. Sen on arveltu joskus levittävän rottatyyfusta (murine typhus) ja riketsiarokkoa (rickettsialpox) rottiin ja ihmisiin. Se on eräillä rottalajeilla esiintyvän rihmamadon Litomosoides carinii väli-isäntä. Allodermanyssus sanguineus (kotihiiripunkki) loisii rotissa, hiirissä ja joskus ihmisissä. Se on myös riketsiarokon välittäjä. Muut Liponyssus lajit ovat lintujen loisia. Eräissä niistä on tavattu epideemisen aivotulehduksen viruksia. Dermanyssys gallinae on yleinen kanapunkki, joka voi myös olla näiden virusten levittäjä.

II C: Ixodina -alalahko käsittää 3 heimoa, Ixodidae (puutiaiset) ja Nuttalliellidae, jotka ovat ns. kovia puutiaisia, ja Argasidae (nahkapuutiaiset) eli pehmeät puutiaiset. Niissä on yhteensä noin 825 lajia. Tämän alalahkon punkkeja nimitetään tavallisesti puutiaisiksi. Puutiaiset ovat punkeista suurimmat, niiden koko vaihtelee 2-30 mm:iin.

Ixodina -alalahko on monien vakavien tulehdustautien levittäjänä erittäin merkityksellinen lääketieteen ja eläinlääketieteen kannalta. Niiden lajit elävät yleensä niityillä ja metsien aluskasvillisuudessa, Rhipicephalus -lajeista sanguineus kuitenkin koirankopeissa ja koiratarhoissa sekä Argasidae -lajit eläinsuojissa ja eläinten pesissä. Argasidae -heimon punkkien toukat, nymfit ja aikuiset yksilöt imevät verta isäntäeläimistään vain muutaman minuutin ajan kerrallaan, kun taas muiden sukujen yksilöt imevät verta yhtämittaisesti useita päiviä.

Ixodidae-heimo on edellä mainituista tärkein ja maailmanlaajuinen. Siihen kuuluvat mm. Ixodes, Haemaphysalis, Dermacentor, Margaropus, Amblyomma, Hyalomma ja Rhipicephalus -suvut. Suurin osa näistä puutiaisista on suurten villieläinten ja kotieläinten sekä satunnaisesti ihmisten loisia, jotka imevät yleensä verta sekä nuoruusmuotoina että täysikasvuisina.

Tähän heimoon kuuluvilla puutiaisilla munasta kehittyvä toukka on n. 0,5 mm:n mittainen. Se imee verta 2?3 päivän ajan linnuista tai pienistä, keskisuurista ja suurista nisäkkäistä. Isäntäeläimestä irrottautumisen jälkeen toukasta kehittyy noin 1,5?2 mm:n mittainen nymfi, joka hakeutuu seuraavaan isäntäeläimeen, johonkin keskisuureen tai suureen imettäväiseen (esim. ihmiseen). Nymfi imee siitä verta 4?5 päivän ajan ennen irrottautumistaan, minkä jälkeen siitä kehittyy sukukypsä puutiainen, joka hakeutuu uuteen isäntäeläimeen, tavallisesti keskisuureen tai suureen imettäväiseen (esim. ihmiseen). Noin viikon ajan verta imettyään naaraspuutiainen jättää isäntäeläimensä ja munii ennen kuolemaansa suuren määrän munia, joista kehittyy taas sukupolvien kiertoa jatkavia toukkia. Sekä toukat, nymfit että täysikasvuiset puutiaiset voivat saada isäntäelämistä imemänsä veren mukana itseensä taudinaiheuttajia, jotka voivat siirtyä puutiaisen seuraavan vaiheen isäntäeläimeen ja siitä taas puutiaisen seuraaviin verta imeviin kehitysvaiheisiin.

Useiden puutiaisten, kuten Ixodes, Dermacentor, Haemaphysalis, Rhipicephalus ja Boophilus-lajien syljessä on neurotoksista, halvaantumisen aiheuttavaa ainetta. Oireita esiintyy varsinkin, jos samanaikaisesti on puremassa useita puutiaisia, erityisesti täysi-ikäisia naaraita, jotka erittävät paljon sylkeä. Taudinkuvaan kuuluu raajakipuja, hoipertelemista ja toisinaan kuumetta.

Kuolemantapauksia on todettu lapsilla, koirilla, karitsoilla, varsoilla ja vasikoilla. Dermacentor anderson -puutiaisen sylkirauhasnesteen ruiskuttaminen hiiriin aiheuttaa niissä halvauksen. Immuuneiksi tulleista koirista saadaan antitoksiiniseerumia. Amblyomma cajennense -puutiaisen purema aiheuttaa kuumeennousua.
Mitä nopeammin puutiaiset poistetaan, sitä pienempi halvaantumisen vaara on. Roomalainen Plinius mainitsi jo noin vuonna 50 jKr, että erään juovikkaan puutiaisen purema saa polvet notkumaan. Kyseessä oli ilmeisesti Haemaphysalis punctata -niminen puutiainen.

Ixodes-lajit ovat maailman eri osissa jossakin määrin toisistaan poikkeavia. Niitä ovat Euroopassa Ixodes ricinus ja reduvius, Venäjällä Ixodes persulcatus, Pohjois-Amerikassa Ixodus dammini, scapularis, dentatus ja neotomae.

Dermacentor andersoni -puutiaista esiintyy Yhdysvalloissa ja Kanadassa Rocky Mountin-vuoristoalueella. Sen ravintokohteita ovat suuret villieläimet ja ihminen. Dermacentor variabilis on amerikkalainen koiranpunkki.

Haemaphysalis leporis-palustris on jänisten puutiainen, mutta se imee verta myös maassa oleilevista linnuista.

Rhipicephalus sanguineus (afrikkalainen koiran puutiainen) on kotien ja koiratarhojen koiranpunkki. Se on yleistynyt myös Suomessa 2000-luvun alkutaitteessa. Tämä punkki lisääntyy myös kotioloissa. Toukat elävät mm. koirien varpaiden väleissä. Naaraspunkit voivat imeä verta myös ihmisistä, tavallisimmin pienistä lapsista. Punkki saattaa levittää ehrlichioosia sekä eläimiin että ihmisiin. Samaan sukuun kuuluvia ovat Afrikassa lajit appendiculatus, sinus ja evertsi.

Margaropus sukuun kuuluvat Boophilus bovis, annulatus ja decoloratus -lajit ovat karjan punkkeja, jotka levittävät babesioosia eli piroplasmoosia ja ehkä trypanosomiaasia.

Amblyomma sukuun kuuluvat puutiaiset ovat villi- ja kotieläinten punkkeja kaikkialla maailmassa, americanum ja maculatum Pohjois-Amerikassa ja Mexicossa, cajennense Mexicossa, Keski- ja Etelä-Amerikassa sekä Länsi-Intian saaristossa, hebraeum ja variegatum Afrikassa. Maculatum -laji aiheuttaa Yhdysvalloissa kotieläinten korviin hankalia ihohaavoja, jotka altistavat eläimet raatokärpästen toukille. Amblyomma -sukuisten punkkien kehitysvaiheet loisivat villieläimissä ja linnuissa.

Nuttalliellidae -heimo käsittää vain yhden harvinaisen afrikkalaisen lajin.

Argasidae -heimoon kuuluvat punkit ovat ns. pehmeitä puutiaisia, joista osa voi aiheuttaa joissakin tapauksissa sairauksia myös ihmisissä. Tärkeimmät suvut ovat Argas ja Ornithodoros. Argasidae -suvun puutiaiset elävät yleensä eläinten pesissä ja eläinsuojissa.

Herodianos kertoi pelätyistä "Miana-luteista" (Argas persicus) taisteluvälineinä vuonna 198 jKr: "Hatra'n [nyk. Al-Hadr, Araba'n valtio] piiritetyt täyttivät astioita syöpäläisillä, pienillä myrkyllisillä eläimillä, ja ripottelivat ne kaupunginmuurilta hyökkääjien päälle, joissa ne nyt tavoittivat kasvot tai muun ruumiinosan, pureutuivat huomaamatta ihoon ja aiheuttivat vaarallisia haavoja. Silloin Severus [Severus Septimus] päätti vetää pois joukkonsa tyhjin toimin."

Argas columbarum (eli reflexus) -lintupuutiainen voi tarttua kyyhkysten pesimispaikoista ihmiseen ja sen purema voi aiheuttaa punoitusta, pulssin nopeutumista, hengenahdistusta ja oksentamista. Punkin toukat voivat aiheuttaa halvauksia kanoilla, kyyhkysillä ja muilla linnuilla. Plinius nimitti niitä "rhagion-hämähäkeiksi".

Ornithodoros -suvun puutiaiset ovat yleensä lintujen loisia ja niitä voi tulla satunnaisesti myös Suomeen lintujen mukana. Ornithodoros moubata elää alkuasukasmajoissa ja imee verta sekä ihmisistä että kotieläimistä.

III: Acariformes- ([aito]punkit) lahkon lajit jaetaan neljään alalahkoon: A Tarsonemida (Heterostigmata) eli tappipunkit, B Actinecida (Prostigmata) eli samettipunkit, C Acarida (Astigmata) eli kääpiöpunkit ja D Oribatida (Cryptostigmata) eli sammalpunkit.

III A: Tarsonemida (Heterostigmata) eli tappipunkkien alahkossa eräät lajit voivat aiheuttaa allergisia oireita viljaa käsitteleville ihmisille.

III B: Actinecida (Prostigmata) eli samettipunkkkien alalahkoon kuuluu noin 135 sukua ja yhteensä noin 14100 lajia. Osa niistä on taloudellisesti merkityksellisiä.

Trombiculidae -suvun eli pistopunkkien toukat elävät useiden selkärankaisten ja joidenkin selkärangattomien eläinten loisina. Ne levittävät tsutsugamushi-tautia eli pensaikkopilkkukuumetta (engl. scrub typhus), jonka aiheuttajana on Rickettsia tsutsugamushi.
III C: Acarida- (Astigmata) eli kääpiöpunkkien alalahkoon kuuluu noin 65 heimoa ja yhteensä noin 6500 lajia. Tähän alaluokkaan kuuluvat useat loisina esiintyvät punkit.

Mätäpunkkeihin (Acaridae) kuuluva juustopunkki, Tyrolichus casei, on 0,6 mm pitkä, elää vanhassa juustossa murentaen sen jauhoksi. Punkkia käytetään juuston valmistuksessa kirpeän maun aikaansaamiseksi. Tyroglyphoidea-lajit elävät monissa varastoiduissa elintarvikkeissa ja voivat aiheuttaa allergisia oireita.

Glycyphagidae eli kotipunkit ja Pyroglyphidae eli pölypunkit ovat erittäin yleisiä asunnoissa. Pölypunkkeihin kuuluvat mm. allergisia oireita aiheuttavat Dermatophagoides -lajit.

Tarsonemoidea -punkkeihin kuuluu mm. Pediculoides ventricosus, viljakutinapunkki. Punkit ravitsevat itseään viljassa elävillä hyönteisillä ja aiheuttavat viljaa käsittelevissä ihmisissä kovaa kutinaa. Kyseessä on allergia punkkien eritteille ja siihen voi liittyä lievää kuumetta ja valkuaista virtsassa.

Sarcoptidae -heimoon kuuluvat syyhypunkit elävät loisina ihmisillä ja eläimillä, mm. Sarcoptes ja Psoroptes-lajit. Demodicidae-heimoon kuuluvat Demodex folliculorum punkit elävät loisina ihmisillä talirauhasissa ja karvapussesissa.

III D: Oribatida- (Cryptostigmata) eli sammalpunkkien alalahkoon kuuluu noin 145 heimoa ja yhteensä noin 8500 lajia. Ne elävät maaperässä ja ovat tärkeitä humuksen muodostumisen kannalta.

Muutamat Oribatida-alalahkoon kuuluvat lajit toimivat eräiden koti- ja villieläinten lapamatojen kuten esim. lampaan lapamadon Moniezia expansan väli-isäntinä loisen kehitysvaiheiden aikana.

Punkit ja loistaudit

Hyvin monet punkit ovat elämänsä eri kehitysvaiheissa loisia, jotka käyttävät ravinnokseen muiden eläinten eritteitä tai imevät niistä verta. Juuri loisluonteensa vuoksi ne toimivat myös tautien siirtäjinä. Osa niiden tartuttamista taudeista leviää punkin tai sen kehitysvaiheiden pureman seurauksena, osa taas niiden ulosteiden ja muiden eritteiden kautta. Eräät punkit aiheuttavat isäntäeläimessä myös varsinaisen loistaudin.

Harpyrynchus tabescentium -nimisellä lintupunkilla on mielenkiintoinen historia. Jo 1500-luvulta lähtien tunnettiin kuolemaan johtava "täitauti", josta käytettiin aikoinaan nimeä Phthiriasis (kreik. phtheiriasis, täisyys). Sen aiheuttajalla oli nimenä Pediculus tabescentium (lat. pediculus, täi; tabescentium, riuduttava). Taudissa tavattiin ihon alla jopa saksanpähkinän kokoisia kyhmyjä, joista purkautui esiin pieniä ja liikkuvia, täitä muistuttavia eläimiä. Tautia sairastaneet kuvattiin riutuneiksi ihmisiksi ja monen historian kuuluisuuden kerrotaan menehtyneen tautiin. Todellisuudessa ainakin puolet tautia sairastaneista kuitenkin parani. "Täitaudin" kuvasivat saksalaisen Alt vuonna 1824 ja hänen maanmiehensä C. H. Fuchs vuonna 1840. Taudin aiheuttajasta ja jopa taudin olemassa olosta kiisteltiin pitkään. Alankomaalainen hyönteistieteilijä A. C. Oudemans selvitti vasta vuonna 1940, että taudin aiheuttaja oli Harpyrynchus tabescentium -nimen saanut lintupunkki, joka tavallisesti elää ja lisääntyy eräiden varpuslintujen pesissä ja nahassa. Tietyissä oloissa punkki aivan ilmeisesti tarttui myös ehkä muuten sairaisiin ja huonokuntoisiin ihmisiin.

Sekä ihmisellä että eläimillä on loisena voimakasta kutinaa aiheuttavia syyhypunkkeja, jotka kuuluvat Acarida alalahkon kääpiöpunkkeihin. Jo Aristoteles (384?322 eKr) tunsi ihmisen syyhypunkin, Sarcoptes scabiei, mutta hän piti sitä täiden nuoruusmuotona. Italialainen Giovanni Cosimo Bonomo (1666?1696) osoitti kyllä vuonna 1687, että syyhypunkki on syyhyn aiheuttaja. Silti oltiin aina 1800-luvun alkupuolelle saakka yleisesti sitä mieltä, että syyhypunkit syntyivät ihmisen ihossa kutisevasta ihottumasta, joka aiheutui veressä esiintyvistä häiriötekijöistä. Wieniläinen ihotautilääkäri Ferdinand von Hebra (1816?1880) osoitti vuonna 1841, saatuaan punkkitartunnan syyhyä sairastaneelta, että punkit olivat syyhytaudin aiheuttajia eikä seurauksia. Kotisivuilla on aiheesta erillinen kirjoitus Syyhy eli scabies.

Monilla eläinlajeilla on omat syyhypunkkinsa. Hevosten, koirien, lampaiden, vuohien ja kameleiden syyhypunkit saattavat toisinaan tarttua myös ihmisiin, mutta tavallisesti ne häviävät parin kolmen viikon kuluessa. Poikkeuksen muodostaa kettujen kapi, jonka aiheuttaja on ketun syyhypunkki Sarcoptes scabiei var. vulpes (latin. vulpes, kettu). Ketun lisäksi sitä esiintyy mm. supikoirissa, ilveksissä, susissa ja koirissa. Se tarttuu kohtalaisen helposti myös ihmiseen, esim. kuolleita, kapisia kettuja käsitellessä, ja voi aiheuttaa pitkäaikaisen ja hankalasti hoidettavan ihottuman. Ketun kapitautia on todettu Suomessa ensimmäisen kerran vuonna 1967.

Eräitä Acaridae -lajeja on löydetty ihmisellä myös ruoansulatuskanavan yläosasta sekä hengitysteistä ja keuhkoista. Weidman totesi jo vuonna 1915 Rhesusapinoilla keuhkoakariasista. H. F. Carter, G. Wedda ja V. St. E. D'Abrera löysivät vuonna 1944 Intiassa voimakkaassa eosinofiliassa punkkeja ihmisen ysköksistä. Eräässä tapauksessa todettiin kaikkia punkin kehitysvaiheita munista lisääntymiskykysiin yksilöihin. Sen perusteella löytäjät otaksuivat, että Tyroglyphus- ja Carpoglyphus- punkit olisivat sopeutuneet elämään hengitysteissä ja että se voisi olla joissakin tapauksissa syynä trooppiselle eosinofilialle (Tropen-Eosinophilie) ja jopa Pseudotuberkuloosille. Soysa on löytänyt vuonna 1949 keuhkopunkkeja eräältä singhaleesisotilaalta vaikeassa astmassa. Tyroglyphidejä on havaittu myös ruoansulatuskanavasta ja virtsateistä, mutta ne ovat ehkä joutuneet näihin paikkoihin ravinnon mukana tai epäpuhtaista katetereista tai suihkunkärjistä.

Demodicidae-suvun (talirauhaspunkit) elävät ihmisen ihossa talirauhasissa ja karvapusseissa (-tupissa). Ihmisellä esiintyy niistä kahta lajia, Demodex folliculorum ja sitä hieman pienempi Demodex brevis. Saksalainen Michael Ettmüller (1644?1683) löysi ensimmäisenä talirauhaspunkin jo 1600-luvun loppupuolella. Talirauhaspunkkien on arveltu olevan joissakin tapauksissa syynä mm. hiustenlähtöön. Koirilla vastaava punkki aiheutta voimakasta syyhyä ja karvanlähtöä.

Ornithodoros (Otiobius) megnini on Yhdysvalloissa, Meksikossa ja Etelä-Amerikassa esiintyvä pehmeä puutiainen, jota voidaan hyvällä syyllä pitää loisena, sillä se saattaa takertua eläinten korviin jopa kuukausien ajaksi..

Punkit ja alkueläintaudit

Suomessa Oskar Vilhelm Löfman (1853?1907) kiinnitti vuonna 1885 huomiota naudoilla verivirtsaisuutta aiheuttavaan kulkutautiin. Romanialainen V. Babés totesi vuonna 1888, että sairauden aiheutti naudan punasoluissa havaittava "diplokokki", jota hän piti bakteerina. Samoihin aikoihin eli vuonna 1889 Theobald Smith (1859?1934) ja Frederick Lucius Kilborne (1858?1925) selvittivät, että tämän Yhdysvalloissa Texas fever -nimellä tunnetun taudin aiheuttaja oli alkueläin Pyrosoma (nyk. Babesia) bigeminum.

Smith ja Kilborne osoittivat myös, että Boophilus bovis -nimiset puutiaiset tartuttivat Texas fever -taudin laitumilla oleviin lehmiin. Koska täysikasvuiset naaraspuutiaiset imivät verta vain yhdestä eläimestä, ne eivät voineet siirtää tautia suoraan sairaista eläimistä terveisiin. Smith ja Kilborne selvittivätkin jatkotutkimuksissaan vuosina 1889?1893, että taudinaiheuttajat siirtyivät tautia kantavista naaraspuutiaisista niiden jälkeläisiin ja vasta niiden kautta toisiin lehmiin. Heidän havaintonsa olivat sysäyksenä myös malarian, keltakuumeen ja muiden hyönteisten levittämien tartuntatautien selvittämiselle.

Texas fever -taudin (eli cattle tick-fever, red water disease tai Babés's disease), tieteelliseltä nimeltään babesiasis (aik. piroplasmosis), aiheuttaa siis Babesia bigeminum (aik. Pyrosoma bigeminum) -niminen alkueläin. Sen muita aiheuttajia ovat Yhdysvalloissa Babesia microtii ja Euroopassa Babesia bovis. Taudin pääasialliset oireet ovat kuumeilu, vaikea anemia ja veren ilmaantuminen virtsaan. Taudin siirtäjänä on edellä mainittu Boophilus bovis -puutiainen, joka kuuluu Margaropus sukuun.

Suomessa piroplasmoosia eli naudan punatautia tutkivat Ali Krogius ja Oskar von Hellens jo vuosina 1894?1896. Elis Richard Hindersson (1877?1945) osoitti vuonna 1909 kokeellisesti, että piroplasmoosi voi siirtyä eläimestä toiseen Ixodes reduvius (eli ricinus) -puutiaisen toimiessa vektorina. Hindersson osoitti myös vuonna 1911, että rokotus piroplasmoosia vastaan on mahdollista.

On olemassa toinenkin punkin levittämä nautakarjan punatauti, laidunkuume, joka on selvästi tavallista punatautia lievempi. Sen aiheuttaja on Babesia divergens. Tautia on Suomessa tutkinut J. Tuomi 1960-luvulla. Myös hevosissa, muuleissa ja aaseissa esiintyy Babesia caballin ja Babesia equinan aiheuttamaa vastaavanlaista tautia.

Afrikassa esiintyy theileriasis -nimistä eläinten alkueläintautia, jonka aiheuttajina ovat Theileria (Gonderia) -lajit. Vakavin näistä taudeista on Theileria parvan aiheuttama "coast fever", jossa karjan kuolleisuus voi olla 90?100 %. "Tropical theileriasis", jonka aiheuttaja on Theileria annulata, on lievempi. Theileriasiksen vektoreina toimivat puutiaiset Rhipicephalus appendiculatus ja simus.

Punkit ja gramnegatiiviset sauvabakteerit

Tularemia eli jänisrutto, jonka aiheuttaa Francisella (aik. Yersinia) tularensis, on merkittävä punkkien tartuttama bakteeritauti. Yhdysvalloissa Parker, Spencer ja Green selvittivät 1920-luvun loppupuolella punkkien osuutta tularemian vektoreina. Taudin siirtäjinä toimivat monet eri puutiaislajit, kuten Ixodes ricinus ja dammini, Dermacentor andersoni ja variabilis, Haemaphysalis-lajit, Rhipicephalus sanguineus ja Amblyomma-lajit. Sen lisäksi eräät kärpäs- ja hyttyslajit toimivat taudin siirtäjinä. Suomessa jänisruton siirtäjänä onkin tavallisimmin hyttynen.

Puutiaiset voivat saada myös salmonellatartunnan ja siirtää sen jälkeläisiinsä. Vektorina voivat toimia lähinnä Dermacentor- ja mahdollisesti Ornithodoros-puutiaiset, jotka levittävät eläimissä tautia aiheuttavaa Salmonella enteritidis -bakteeria. Ihmisten salmonellatautien aiheuttajana puutiaisilla ei ole merkitystä käytännössä.

Punkit ja spirokeetat

Toisintokuume (Febris recurrens, engl. relapsing fever) on Borrelia -sukuisten spirokeettojen aiheuttama sairaus, jossa on noin viikon välein toistuvia kuumevaiheita. Euroopassa sekä muualla lauhkean ja arktisen alueen maissa se esiintyy tavallisesti vaatetäiden levittäminä epidemioina. Sen aiheuttaja on Borrelia recurrentis -spirokeetta. Vaatetäiden levittämä toisintokuume ei kuulu tämän esityksen piiriin.

Subtrooppisissa ja trooppisissa maissa toisintokuume on jatkuvasti esiintyvä endeeminen tartuntatauti, jota levittävät puutiaiset. Edellä on jo kerrottu ranskalaisen Dupré'n vuonna 1809 kuvaamasta persialaisesta toisintokuumeesta ja David Livingstonen vuonna 1857 kuvaamasta afrikkalainen toisintokuumeesta, joita mainitut tutkijat pitivät punkkien aiheuttamina. Livingstonen kuvaama "human tick disease" tunnetaan nykyään nimellä "tick-borne (endemic) relapsing fever". Dutton ja Todd osoittivat Kongossa vuonna 1903, ja vuonna 1904 myös Robert Koch, että "tick-borne relapsing fever" eli endeeminen toisintokuume oli Ornithodoros moubata -puutiaisen levittämä tauti ja että se siirtyi puutiaisissa niiden munien välityksellä ainakin kahteen seuraavaan puutiaissukupolveen. Afrikkalaisen toisintokuumeen aiheuttavalle spirokeetalle on annettu nimeksi Borrelia duttoni.

Toisintokuumetta aiheuttavat myös muut Borrelia-lajit, kuten mm. Borrelia persica, berbera, venezuelensis, turicatae ja hermsii. Sen siirtäjinä toimivat monet pehmeisiin puutiaisiin kuuluvat Ornithodoros -lajit, moubatan lisäksi mm. erratious, papillipes, tholozani, marocanus, venezuelensis, talaje ja turicata.Yhdysvalloissa toisintokuumetta levittävä puutiainen Ornithodoros parkeri asustaa pöllönpesissä ja levittää sitä pöllöihin.

Lymen taudin aiheuttajana on Borrelia burgdorferi ja sen siirtäjinä toimivat useat puutiaiset, mm. Yhdysvalloissa Ixodes dammini ja Suomessa Ixodes ricinus. Lymen tauti (Lyme disease: Lyme on piirikunta Conneticut'issa Yhdysvalloissa) on hitaasti kehittyvä ja pitkäaikainen, hyvin monioireinen sairaus, joka voi hoitamattomana aiheuttaa pysyviä muutoksia lukuisissa elimissä. Taudin ensimmäinen oire on usein punkin pureman ympärille kehittyvä, vähitellen laajeneva ja keskeltä paraneva ihottumarengas. Lymen taudista on kotisivuilla erillinen kirjoitus Puutiaisten levittämä Lymen tauti eli borrelioosi.

Punkit ja riketsiat

Riketsiat (Rickettsiae) jaetaan tavallisesti Rickettsia-, Coxiella- ja Ehrlichia-sukuihin. Riketsiat aiheuttavat ensisijaisesti eläinten sairauksia, joita useat punkkilajit levittävät. Monet riketsioiden aiheuttamat taudit tarttuvat myös ihmisiin, yleensä puutiaisten välityksellä. Eräät riketsiataudit ovat hoitamattomina hengenvaarallisia, mutta antibiootit tehoavat tavallisesti hyvin niiden aiheuttajiin. Kuten aikaisemmin on kerrottu, riketsian aiheuttama epideeminen pilkkukuume (typhus exanthematicus) ei ole punkkien vaan täiden levittämä.

Kalliovuorten kuume eli Rocky Mountain spotted fever (lyh. RMSF, muita nimiä ovat Tick fever, Brazilian spotted fever eli São Paulo fever, Colombian spotted fever) on vakava tartuntatauti, jonka aiheuttaja on Rickettsia rickettsi. Tautia on todettu monissa maailman osissa, mm. Yhdysvalloissa, Kanadassa, Meksikossa, Keski- ja Etelä-Amerikassa sekä Australiassa. Tauti on luonnossa lähinnä eräiden jänislajien tauti ja sitä levittävät useat puutiaiset, kuten Dermacentor andersoni, reticulatus, variabilis ja occidentalis, Rhipicephalus sanguineus, Amblyomma americanum ja cajennense, Haemaphysalis leporis-palustris ja leachi sekä Ornithodoros parkeri ja nicollei.

Välimeren pilkkukuume tunnetaan myös monilla eri nimillä, kuten Mediterranean spotted fever (MSF), fièvre boutoneuse Kenya typhus, South African tick typhus ja Indian tick typhus. Taudin aiheuttaja on Rickettsia conorii ja sen siirtäjänä toimivat Ixodes-lajien puutiaiset koirista ja eräistä jyrsijöistä. Muita riketsioiden aiheuttamia ja paikallisten puutiaisten eri jyrsijälajeista siirtämiä tauteja ovat (North) Queensland tick typhus (aiheuttaja Rickettsia australis), riketsiarokko eli rickettsialpox (aiheuttaja Rickettsia acari) ja North Asian tick-borne rickettsiosis (aiheuttaja Rickettsia sibericus).
Tsutsugamushi-taudin eli pensaikkopilkkukuumeen (engl. scrub typhus) aiheuttaja on Rickettsia tsutsugamushi. Tauti aiheuttaa kahdesta neljään viikkoa kestävän kuumeen sekä vakavia hengitysteiden ja verenkierron oireita. Se on hoitamattomana hengenvaarallinen. Tautia esiintyy Kaakkois-Aasiassa ja sen saaristossa sekä Japanissa. Sen siirtäjinä toimivat Actinecida- eli samettipunkkkien alalahkoon kuuluvat Trombiculidae -suvun eli pistopunkkien toukat, jotka elävät useiden selkärankaisten ja joidenkin selkärangattomien eläinten loisina.

Rickettsia mooseri aiheuttaa joskus ihmisessä taudin, Flea borne murine typhus, jonka levittäjänä on tavallisesti rottakirppu Xenopsylla cheopis mutta joskus myös trooppinen rottapunkki Liponyssus bacoti. Tauti on varsinaisesti hiirten, rottien ja muiden jyrsijöiden sairaus.

Afrikassa ja Madagaskarin saarella esiintyy naudoissa, lampaissa ja vuohissa Rickettsia (tai Cowdria) ruminantium'in aiheuttamaa sairautta, josta käytetään nimiä Heartwater sickness tai Drunk bull sickness. Taudille on ominaista nesteen kertyminen sydän- ja keuhkopusseihin. Tautia levittävät puutiaiset Amblyomma hebraeum ja Rhipicephalus bursa.

Etelä-Afrikassa tavataan naudoissa myös Anaplasma marginale -riketsian aiheuttamaa Anaplasmosis -tautia (South African gall sickness), jonka siirtäjinä toimivat puutiaiset ja eräät verta imevät hyönteiset.

Q-kuumeesta, jonka aiheuttaja on Coxiella burnetii, käytetään monta eri nimeä, kuten Q fever, Query fever, Rickettsial pneumonia, Balkan grippe ja Nine Mail Fever. Tauti kiertää eläimissä yleensä eri puutiaislajien välityksellä. Ihmiseen tauti tarttuu tavallisesti suoraan eläimistä, esim. lehmän, lampaan ja vuohen maidosta tai synnytysjälkeisistä.

Ehrlichiat aiheuttavat sairauksia sekä ihmisellä että eläimillä. Niiden välittäjinä toimivat eräät puutiaislajit, mm. Rhipicephalus sanguineus (afrikkalainen koiran puutiainen), jota on tavattu viime vuosina myös Suomessa. Ehrlichiooseista voidaan mainita ihmisellä Human granulocytic ehrlichiosis (HGE) ja Human monocytic ehrlichiosis (HME), koiralla Ehrlichiosis canis ja naudoilla Pasture fever (laidunkuume).

Punkit ja virukset

Suomessa ainoa punkkien välittämät virustauti on Kumlingen taudin nimellä tunnettu aivotulehdus (tick-borne encephalitis, TBE, puutiaisaivokuume), jota esiintyy Itä- ja Keski-Euroopassa sekä Skandinaviassa. Suomessa sitä tavataan vain Ahvenanmaan ja Turun saaristossa sekä joskus harvoin Kaakkois-Suomessa ja Merenkurkun saaristossa. Tautia levittää tavallinen puutiainen, Ixodes ricinus. Niistä vain muutama tuhannesta on viruksen kantajia. Tauti ei ole yleensä vaarallinen, mutta se on kiusallinen ja pitkäaikainen. Tautiin ei ole hoitoa, mutta sitä vastaan voidaan rokottaa.

Suomessa puutiaisista on eristetty myös Uukuniemi-virus, mutta sen merkitys taudinaiheuttajana ihmisellä ei ole selvillä. Muualla maailmalla on olemassa useita puutiaisen siirtämiä aivotulehdusviruksia, mm. siperialaisen puutiaisenkefaliitin aiheuttaja, jonka siirtäjinä toimivat monet puutiaislajit, mm. Ixodes persulcatus sekä Dermacentor- ja Haemaphysalis-lajit. Virusten varastoina ovat ilmeisesti linnut.

Yhdysvaltojen länsiosissa, erityisesti Coloradossa, esiintyy sairautta nimeltään Colorado tick fever (CTF), joka on Reoviridae -ryhmään kuuluvan orbiviruksen aiheuttama tauti. Taudilla on kaksivaiheinen kulku ja sen oireina on päänsärkyä, oksennuksia ja kuumetta. Toipuminen on tavallista, mutta pienillä lapsilla voi esiintyä vaarallista aivotulehdusta. Taudin siirtäjinä ovat Dermacentor andersoni -puutiaiset. Viruksen pääasiallisena tartuntalähteenä on maaorava Citellus lateralis (golden-mantled ground squirrel).

Eräs viime aikoina esille tullut punkkien välittämä sairaus on Krimin-Kongon verenvuotokuume, joka voi olla ihmisille hengenvaarallinen. Sitä aiheuttavaa virusta esiintyy luonnossa karjassa sekä villeissä selkärankaisissa. Tauti todettiin ensimmäisen kerran vuonna 1981 Etelä-Afrikassa, jossa sitä levittävät ainakin Hyalomma -sukuun kuuluvat punkit. Tauti voi tarttua myös kosketus- ja pisaratartunnan kautta mm. teurastamoissa. Sitä on ollut vuonna 2001 mm. Balkanin niemimaalla Kosovon alueella.

Punkit ja allergia

Tappipunkkien (Tarsonemida) alalahkoon kuuluvista punkeista Pediculoides ventricosus eli viljakutinapunkki loisii viljassa elävillä hyönteisillä ja sen eritteet voivat aiheuttavat viljaa käsittelevissä ihmisissä ankaraa kutinaa ja ihottumaa. Kyseessä on allerginen reaktio, johon voi liittyä lievää kuumetta ja valkuaista virtsassa.
Useiden kääpiöpunkkien (Acaridae) alahkoon kuuluvien punkkien eritteet ovat herkästi allergisoivia. Pölypunkkeihin (Pyroglyphidae) kuuluva Dermatophagoides pteronyssinus elää ihmisen ihon hilseestä vuoteissa ja makuuhuoneissa. Sen eritteet aiheuttavat useille ihmisille allergisia reaktioita, lähinnä hengitysteissä.

Samaan alalahkoon kuuluvista Tyroglyphoidea punkeista useat lajit elävät varastoiduissa elintarvikkeissa. Niiden eritteet voivat aiheuttaa ruokatavaroita käsitteleville kutisevaa, punoittavaa ja näppyläistä ihottumaa, joka tunnetaan englannin kielessä nimellä "grocer's itch" tai "copra itch" (ruokatavarakauppiaan syyhy tai koprasyyhy).

On olemassa myös havaintoja, että eräät Tyroglyphus- ja Carpoglyphus- sukujen punkit voisivat aiheuttaa hengitysteissä allergisia oireita pölyn mukana niihin joutuessaan.

Kirjoitus on luonnosteltu vuonna 1990, tarkistettu maaliskuussa 2000 ja kesäkuussa 2001. Tarkistuksia toukokuussa 2003. Lisätty ketun syyhypunkkia koskeva kohta lokakuussa 2005. Vähäisiä täsmennyksiä syyskuussa 2005. Joitakin selventäviä tarkistuksia huhtikuussa 2007. Lisätty Rhipicephalus sanguineus -punkkia koskevia tietoja syyskuussa 2007.

Kirjallisuutta:

Bondesson, J.: Abraham Andreae Angermannus, Den lussjuke ärkebiskopen. Draco pro Medico 1990: 5: 14?22
von Bonsdorff, B.: The History of Medicine in Finland 1828?1918. The History of Learning and Science in Finland 1828?1918. Helsinki 1975
Encyclopædia Britannica 1990, useat hakusanat ja artikkelit
Lääketieteellinen mikrobiologia. Toim. O. Mäkelä ja muut. Duodecim. 6. uudistettu laitos. Jyväskylä 1993.
Maxcy, K. F.: Rosenau Preventive Medicine and Hygiene. Seventh Edition. USA 1951



Takaisin alkuun
Näytä käyttäjän tiedot Lähetä yksityinen viesti Lähetä sähköposti
soijuv



Liittynyt: 21 Tam 2009
Viestejä: 1897


LähetäLähetetty: Tor Syy 03, 2009 10:07 Viestin aihe: Vastaa lainaamalla viestiä Muokkaa/Poista viesti Poista tämä viesti Näytä lähettäjän IP
Puutiaisten levittämä Lymen tauti eli borrelioosi

Arno Forsius

http://www.saunalahti.fi/arnoldus/lymentau.html

Kansanperinteessä täintarhalla ymmärrettiin rengasmaista sieni-ihottumaa, savipuolta, jonka aiheuttaa eräs ihossa viihtyvä silsasieni, trichophytia superficialis. Koska täintarhaa pidettiin täiden aiheuttamana, käytettiin samankaltaisuuden periaatteen mukaisesti täitä myös sen parantamiseen. Hoidon katsottiin tehoavan parhaiten, jos täit oli otettu kaksosista tai kaksosten äidistä.

Täintarhalla ei ole kuitenkaan mitään tekemistä täiden kanssa ja luultavasti perinne on sekoittanut keskenään täin ja puutäin eli puutiaisen, joka kuuluu punkkeihin. On hyvin mahdollista, että täintarhalla onkin alunperin tarkoitettu puutiaisen pureman ympärille kehittynyttä rengasmaista erythema migrans -muodostuma, Lymen taudin ensioiretta. Tämä hitaasti laajeneva, reunoistaan hieman punoittava ja koholla oleva ihottuma ilmaantuu tavallisesti näkyviin parin kolmen viikon kuluttua puutiaisen puremasta. Ihottuman kesto on useista viikoista kuukausiin.

Erythema migransin taudinkuvan esitti ensimmäisenä ruotsalainen A. Afzelius vuonna 1908. Lipschütz ym. kuvasivat vuonna 1909 erythema migrans chronicumin ja samana vuonna Afzelius totesi puutiaisenpureman ja erythema migrans chronican välisen yhteyden. Bäfverstedt kuvasi vuonna 1911 Lymphadenosis benigna cutiksen, saman taudin toisen ilmenemismuodon.

Ranskalaiset C. Garin ja C. Bujadoux kuvasivat vuonna 1922 puutiaisenpureman yhteyden eräisiin neurologisiin oireisiin. Samoihin päätelmiin tulivat ruotsalainen S. Hellerström vuonna 1930 meningoencephaliitin ja Bannwarth vuonna 1941 lymfosytaarisen meningoradikuliitin kohdalla.

C. Lenhoff totesi jo vuonna 1948 spirokeettaa muistuttavia organismeja erythema migrans -taudin ihonäytteissä ja vuonna 1951 ruotsalainen E. Hollström onnistui hoitamaan erythema migrans -taudin penisilliinillä. Tämän perusteella tautia oli syytä pitää mikrobin aiheuttamana tulehduksena. Suomessa C.- E. Sonck (s. 1905) yritti istuttaa erythema migransin potilaasta itseensä vuonna 1951, mutta ei onnistunut. Potilas hoidettiin penisilliinillä. E. Binder siirsi työtoveriensa kanssa vuonna 1955 erythema migrans -potilaalla tulehduksen terveeseen paikkaan. Sonck puolestaan onnistui vuonna 1957 siirtämään erythema migransin eräästä potilaasta itseensä. Sonckin saama erythema migrans parani kuukausien kuluessa itsekseen, mutta potilas, jolta hän sai tautinsa, sairasti myöhemmin vaikeita neurologisia häiriöitä.

Lymen kaupungissa ja sitä ympäröivässä samannimisessä piirikunnassa Yhdysvaltojen Conneticutissa oli havaittu 1960-luvulta lähtien sekä lapsilla että aikuisilla useita taudintapauksia, joissa oli oireina niveltulehduksia ja ihottumaa. Allen G. Steere ja Stephen Malawista pystyivät 1970-luvun puolivälissä selvittämään, että useimmilla potilailla oli ollut ennen mainittujen oireiden alkamista erythema migrans, joka tunnetusti oli seuraus puutiaisenpuremasta. He antoivat vuonna 1975 sairaudelle nimen Lymen tauti.

Steere sai työtoverikseen Willy Burgdorferin, joka oli tutkinut aikaisemmin punkkien levittämiä tauteja. He löysivätkin tutkijatoveriensa kanssa vuonna 1982 puutiaisista aikaisemmin tuntemattoman spirokeetan, joka osoittautui Lymen taudin aiheuttajaksi. Spirokeetalle annettiin nimeksi Borrelia burgdorferi. J. L. Benach eristi työtoveriensa kanssa spirokeetan potilaista vuonna 1983. Vasta nyt Lymen taudin kokonaiskuva alkoi selkiytyä. Avuksi tulivat myös vasta-ainemääritykset epäselvissä tapauksissa.

Tarinaan liittyy vielä eräs sivujuonne. Ruotsissa oli käytetty menestyksellisesti penisilliiniä vuonna 1946 acrodermatitis atrophicans -taudin hoidossa. Tämä tautihan ei ollut uusi, sillä Karl Herxheimer (1861?1944) oli kuvannut sen jo vuonna 1883. Hoidon tulokset viittasivat voimakkaasti infektioon taudin syynä. Myös Helsingin yleisen sairaalan sisätautiklinikalla hoidettiin vuonna 1951 acrodermatitis atrophicans-potilaita penisilliinillä. Taudin perimmäinen syy oli edelleen tuntematon, kunnes ruotsalainen E. Åsbrink osoitti vuonna 1984, että acrodermatitis atrophicans oli eräs Lymen taudin monista ilmenemismuodoista.

Lymen taudin kehityksessä on kolme eri vaihetta. Primaarivaihe on erythema migrans, joskus harvoin lymphadenosis benigna cutis. Sekundaarivaiheessa tauti leviää suuriin niveliin ja tertiaarivaiheessa se aiheuttaa oireita keskus- ja ääreishermostossa, aistinelimissä, sydämessä, lihaksissa, sidekudoksessa ja luustossa. Silmäoireita voi olla taudin kaikissa vaiheissa.

Taudin siirtäjinä eli vektoreina ovat Yhdysvalloissa punkkeihin kuuluvat puutiaiset Ixodes dammini ja Ixodes pacificus, Suomessa Ixodes ricinus. Ne saavat tartunnanaiheuttajan itseensä nuoruusmuotonsa aikana eli nymfinä ollessaan, ja tartunnan siirtäjinä voivat toimia sekä nymfit että sukukypsät naaraat. Yhdysvalloissa Borrelia burgdorferin tärkein isäntäeläin on valkojalkahiiri, Pohjoismaissa metsämyyrät ja metsähiiret. Kaliforniassa mikrobia on todettu rotissa, joista tarvitaan ihmiseen kahden eri punkkilajin tartuntaketju. Ruotsalaiset tutkijat ovat havainneet Borrelia burgdorferin aiheuttamia infektioita myös linnuissa.

Lymen tauti on aina hoidettava antibiooteilla, sillä krooniseksi ehdittyään se on vaikeasti parannettavissa ja saattaa jatkuessaan aiheuttaa pitkällisen ja invalidisoivan keskushermoston tulehduksen. Taudin hoitoon käytetään yleisimmin amoksisilliinia tai doksisykliiniä riittävinä annoksina. Lymen taudin aikana elimistössä kehittyy vasta-aineita sen aiheuttajaa kohtaan, mutta sairastettu tauti ei anna suojaa uutta tartuntaa vastaan.

Suomessa Borrelia burgdorferin tartunnan voi saada etenkin Ahvenanmaalla sekä Lounais- ja Etelä-Suomessa, harvinaisena Kainuuseen saakka. Puutiaiset tarttuvat ihmiseen ja eläimiin kosteista ruohikoista eikä puista, kuten tavallisesti uskotaan. Tartunta leviää yleensä vasta puutiaisen oltua kiinni ihossa vähintään kahdeksan tai jopa 20 tuntia. Läheskään kaikissa puutiaisissa ei ole onneksi taudin aiheuttajaa.

Tartunnanvaarallisilla alueilla kesäaikana liikkuessa on aiheellista pitää joka ilta huolellinen puutiaistarkastus. Puutiaisen nymfimuodot ovat pieniä ja vaikeasti havaittavia. Pureman huomaamista vaikeuttaa sekin, että puutiainen erittää syljessään puuduttavaa ainetta.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Ma Kesä 13, 2011 14:41


Tutkimuksissa on löydetty borrelia-bakteereita hyttysistä sekä hirvi- ja hevoskärpäsistä.


Lyme Disease and Its Neurological Complications author Michael F. Finkle, MD source: Archives of Neurol--Vol. 45, Jan 1986

".........Studies have demonstrated that deerflies, horseflies, and mosquitos can carry the B. burgdorferi spirochete......."



".....in some parts of the United States, 100% of the examined ticks have been infected.............

"...Ticks species that are themselves infected to a higher degree will increase the reservoir pool among the different animal species and increase the likelihood that human beings will become infected.(21,22,28-33) Studies also indicate that birds can serve as hosts......
..and thus act as reservoirs for B. burgdorferi. The bird reservoir allows for long distance dispersal of the spirochete within and between continents.........Studies have demonstrated that deerflies, horseflies, and mosquitos can carry the B. burgdorferi spirochete....The percentage of infected flies increases in areas where I. dammini is present. Therefore, these flies are probably serving as secondary vectors....."
[I. dammini was name the given to the deer tick I. scapularis-- for a short time --someone thought it was a new species]

"An additonal concern for clinicians is the possibility that the ..tick may simulataneously expose an individual to two organisms that can present with central nervous system symptoms. Cases have been reported in Wisconsin and New York of people with direct infection as well as antibodies against both the Babesia microti organism and the B. burgdorferi spirochete." (104-106)
-------------------------------------------------------------------------------------------------------------------------------------

Silmän alueen Borrelioosi
...Borrelioosia välittävät hirvikärpäset, hyttyset, punkit ja hevoskärpäset.



Ocular lyme disease.
Authors: Hunt L
Source: Insight 1996 Jun;21(2):56-7
Organization:

Abstract:
Lyme disease is reported from all over the United States. Transmitted by deer ticks, mosquitoes, and deer flies, it affects numerous organ systems. All age groups are vulnerable to this disease and must be educated about early signs and symptoms to speed diagnosis and appropriate treatment.

Language: Eng

Unique ID: 97112806
___________________
-----------------------------------------------------------------------------------------------------------------------------------


J Infect Dis. 1986 Aug;154(2):355-8. Related Articles, Links

The etiologic agent of Lyme disease in deer flies, horse flies, and mosquitoes.

Magnarelli LA, Anderson JF, Barbour AG.

PMID: 2873190 [PubMed - indexed for MEDLINE]

The Journal of Infectious Diseases . Vol. 154, No. 2 .
August 1986.

"The Etiologic Agent of Lyme Disease in Deer Flies, Horse flies, and Mosquitoes"
Louis A. Magnarelli, John F. Anderson, Alan G. Barbour

"...Discussion
This is the first report of B. burgdorferi in horse flies, deer flies and
mosquitoes. ....the number of infected deer flies and horse flies varied with the species and sampling areas....Also, like mosquitoes and other biting insects, the blood- feeding behavior of female tabanids differs within and between species, and infection may be correlated , in part, with the quantities of blood ingested....... ......Serological studies of mammals and identification of B. burgdorferi have established that this agent is widely distributed within given habitats in the United States and that closely related strains exist in Europe. The presence of this bacterium in tabanids and mosquitoes increases the risk of Lyme disease in tick infested areas. these and other blood sucking arthropods should recieve further consideration in ecological and epidemiological studies of this disease and of related disorders. ..."



----------------------------------------------------------------------------------------------------------------------------------

JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 1988, p. 1482-1486
0095-1137/88/081482-05$02.00/0
Copyright © 1988, American Society for Microbiology

Ticks and Biting Insects Infected with the Etiologic Agent of Lyme Disease, Borrelia burgdorferi

LOUIS A. MAGNARELLI* AND JOHN F. ANDERSON

Department of Entomology, The Connecticut Agricultural Experiment Station, P.O. Box 1106, New Haven,
Connecticut 06504
Received 11 March 1988/Accepted 6 May 1988

Members of 18 species of ticks, mosquitoes, horse flies, and deer flues were collected in southeastern Connecticut and tested by indirect fluorescent-antibody staining methods for Borrelia burgdorferi, the etiologic agent of Lyme disease. An infection rate of 36.2% (116 tested), recorded for immature Ixodes dammini, exceeded positivity values for all other arthropod species. Prevalence of infection for hematophagous insects ranged from 2.9% of 105 Hybomitra lasiophthalma to 14.3% of seven Hybomitra epistates. Infected I. dammini larvae and nymphs coexisted with infected Dermacentor variabilis (American dog tick)immatures on white-footed mice (Peromyscus leucopus), but unlike I. dammini, none of the 55 adult American dog ticks collected from vegetation harbored B. burgdorferi. Groups of 113 field-collected mosquitoes ofAedes canadensis and 43 Aedes stimulans were placed in cages with uninfected Syrian hamsters. Of these, Il females of both species contained B. burgdorferi and had fed fully or partially from the hamsters. No spirochetes were isolated from the hamsters, but antibodies were produced in one test animal.

The causative agent of Lyme disease, Borrelia burgdorferi, has been detected in or isolated from ticks (2, 5, 9-11, 21), human tissues (8, 32), and the blood and organs of wildlife (1-3, 5, 19). Although Ixodes dammini is the chief vector of B. burgdorferi in the northeastern United States, Wisconsin, and Minnesota, other arthropods, such as mosquitoes, horse flies, and deer flies, have also been found harboring this bacterium (22). Evidence of transmission by hematophagous insects, however, is limited to infrequent associations between bites and the development of erythema migrans (13, 15, 22), a unique skin lesion that marks the early
stage of Lyme disease (31, 32).

Members of several species of arthropods harbor B. burgdorferi during the summer, but little is known about the prevalence of infection in different sites and years. Moreover, it is unclear whether naturally infected mosquitoes, horse flies, and deer flies retain spirochetes in their digestive tracts, complete gonotrophic cycles, and efficiently transmit B. burgdorferi to vertebrate hosts. The objectives of this study were to compare prevalences of infection for ticks and biting insects in two rural communities in Connecticut where human infections with Lyme disease have been documented, to determine reproductive life histories for spirochete-infected blood-seeking mosquitoes, horse flies, and deer flies,
to determine whether B. burgdorferi can survive in experimentally infected horse flies, and to attempt to isolate B. burgdorferi from Syrian hamsters fed upon by naturally infected mosquitoes in the laboratory.

MATERIALS AND METHODS
Study sites and sampling. Ticks, mosquitoes, deer flies, and horse flies were collected during 1986 and 1987 in Salem and Norwich, communities in southeastern Connecticut where Lyme disease is endemic (23, 33). During spring and summer, immatures of I. dammini and Dermacentor variabilis (American dog tick) were removed from Peromyscus leucopus (white-footed mouse) captured in or near forests, while adult ticks of both species were obtained during spring or summer by flagging vegetation along trails near woodlands. Blood-seeking mosquitoes and deer flies were captured in an insect net during the summer (time of collection,
1000 to 1500 h) as they approached the investigator. Mosquitoes were removed by an aspirator and separated from deer flies before being transported to the laboratory. Horse flies were collected during June and July by erecting dry-icebaited canopy traps (28). All insects were kept on crushed ice or in styrofoam containers in the field and while in transit.
Dissection and identification of B. burgdorferi. Midgut tissues were dissected from ticks and smeared onto glass microscope slides as described previously (5, 9). Heads were removed from mosquitoes and placed on other microscope slides. Internal contents were expelled and smeared by applying pressure to cover slips placed over the heads.
Anterior digestive tracts, including the salivary glands and proventriculus, were dissected from field-collected horse flies and deer flies (tabanids) and from experimentally infected females of a salt marsh horse fly, Tabanus nigrovittatus. These tissues were smeared onto slides in the same manner as the tick and mosquito tissues. After drying at 37°C, all preparations were fixed in acetone for 10 min and overlaid with murine monoclonal antibody (H5332) diluted 1: 4 or 1:8 in phosphate-buffered saline (PBS) solutions. This antiserum was directed to outer surface protein A, a polypeptide of approximately 31 kilodaltons (6, 7) that is common to all North American isolates of B. burgdorferi. The specificity of this monoclonal antibody, dilutions of reagents, application of fluorescein isothiocyanate-labeled goat anti-mouse immunoglobulin G (IgG) (1:40), and other procedures used in indirect fluorescent-antibody (IFA) staining
have been reported (5-7, 21, 22). Reproductive life histories. Ovaries were dissected from mosquitoes and tabanids to determine the number of completed gonotrophic cycles. Tissues were teased apart in Ringer physiological saline solution, and ovarioles were examined microscopically to determine whether dilatations or relics (yellow bodies) had formed in follicular tubes. The presence of these structures is evidence of egg development
1482
Vol. 26, No. 8
Downloaded from jcm.asm.org by on November 3, 2009
B. BURGDORFERI IN TICKS AND INSECTS 1483 and oviposition (parity) and can be used to determine the number of ovarian cycles completed. Dissection procedures, terminology for ovarian structures, and interpretations of parity are those of Detinova (12). In general, females of most biting insects ingest blood from vertebrate hosts, mature
their eggs, and deposit them in or near aquatic or semiaquatic habitats. Multiple blood feedings and ovarian cycles can occur (12, 20, 34).
Feeding trials and isolation attempts. Blood-seeking mosquitoes of Aedes canadensis and Aedes stimulans were collected from woodlands in Salem and Norwich. Groups of females, separated by species, were placed into screened cages with anesthetized, uninfected Syrian hamsters in the
laboratory. These mammals can be used to isolate B. burgdorferi (17). All test animals were initially immobilized with Penthrane (Abbott Laboratories, North Chicago, Ill.) and subsequently injected with ketamine hydrochloride (Vetalar; Parke-Davis, Morris Plains, N.J.). Hamsters were shaved along the head and back to allow mosquitoes to feed readily.
After 1 h, the blood-engorged mosquitoes were separated from the unfed individuals, dissected, and screened for spirochetes by IFA staining methods. Two additional hamsters were each inoculated intraperitoneally with 150 ,ul of Barbour-Stoenner-Kelly (BSK) medium containing living B.
burgdorferi (CT strain 22956), a 10-day-old culture of a primary isolate recovered from a kidney of P. leucopus captured in Armonk, N.Y. The number of spirochetes in the culture medium was about 4.0 x 106/ml. For negative controls, four normal hamsters (not exposed to mosquitoes) were kept in separate cages adjacent to those of the hamsters fed upon by mosquitoes or challenged by inoculation. Kidneys and spleens were aseptically removed, triturated, and inoculated into BSK medium as described previously (1, 3, 17). Cultures were held at 31°C for 4 to 7 weeks, and samples of medium were examined by dark-field microscopy
to detect living spirochetes. In addition, blood samples were collected from hamsters, and sera were stored at -60°C until IFA analyses for antibodies to B. burgdorferi could be performed.
Laboratory experiments were conducted to determine whether B. burgdorferi survives in females of T. nigrovittatus. Blood-seeking horse flies were collected in canopy traps during July 1985 and August 1986 in a salt marsh in Milford, Conn. After being transferred to sugar-free cages in
the laboratory, the insects were held overnight with distilled water at 21 + 3°C. On the next day, they were placed on membrane feeding devices (26) for 20 to 30 min. The food source was kept in a glass reservoir and consisted of 2.0 ml of fresh, citrated beef blood mixed with equal volumes of 7-day-old BSK medium containing living B. burgdorferi (CT strain 2591) or PBS (negative control). Following feeding trials, females were dissected at hourly or daily intervals, and duplicate preparations of head and digestive tract tissues were examined for spirochetes by dark-field microscopy and IFA staining methods.
Serologic testing. Hamster serum samples were screened for total immunoglobulin to B. burgdorferi by IFA staining procedures (5, 21). Polyvalent fluorescein isothiocyanatelabeled goat anti-hamster IgG (Kirkegaard & Perry Laboratories, Gaithersburg, Md.) was diluted 1:30 in PBS solution. Sera from inoculated hamsters, obtained during earlier experiments, served as positive controls; B. burgdorferi infections were confirmed by reisolating the spirochetes from kidney or spleen tissues. Uninfected (normal) hamster sera were also included as controls. In preliminary analyses of nine normal serum samples, there was no nonspecific reac-
TABLE 1. Total arthropods collected and number of specimens infected with B. burgdorferi in Salem and Norwich, Conn., during 1986 and 1987
Salem Norwich
Arthropod species No. of Nfo. o of No specimens infected specimens infected collected collected
Ticksb
I. dammini 116 42 (36.2) 2 0
D. variabilis 52 10 (19.2) 14 0
Mosquitoes
A. canadensis 113 11 (9.7) 10 0
A. cinereus 19 0 5 0
A. stimulans 21 2 (9.5) 23 1 (4.4)
A. triseriatus 18 2 (11.1) 36 0
Deer flies
C. callidus 106 9 (8.5) 57 6 (10.5)
C. cincticornis 20 0 9 0
C. geminatus 49 0 0 C
C. macquarti 36 3 (8.3) 2 0
C. univittatus 144 13 (9.0) 1 0
C. vittatus 101 3 (3.0) 10 0
Horse flies
H. epistates 7 1 (14.3) 1 0
H. hinei 51 2 (3.9) 17 0
H. lasiophthalma 101 8 (7.9) 105 3 (2.9)
H. sodalis 38 0 0
T. lineola 15 0 0
T. quinquevittatus 12 0 2 0
a Determined by IFA staining with murine monoclonal antibody H5332.
b Larvae and nymphs removed from white-footed mice.
c-, Not determined.
tivity at dilutions of -1:16. Therefore, reactions of test sera
at or above a 1:16 dilution were considered positive. All
serum samples were retested to determine reproducibility.
Statistical analyses. When sample sizes were adequate (n >
30), variances were computed and tested for homogeneity by
an F test (30). Statistical differences in sample means were
then determined by an appropriate Student's t test. All
analyses were conducted at the P < 0.01 level of significance.
RESULTS
Ticks, mosquitoes, and tabanids of 12 species harbored B.
burgdorferi. The percentage of infected I. dammini immatures
(36.2%) removed from white-footed mice in Salem was
significantly greater than those of all other arthropods studied
(Table 1). The second highest rate (19.2%) was recorded
for immatures of D. variabilis. Spirochetes in midgut preparations
of I. dammini usually exceeded an average of 50 per
40x microscopic field. Tissues of naturally infected horse
flies and deer flies normally contained ca. 10 to 50 spirochetes
per field, while after considerable searching, preparations
of head tissues from mosquitoes rarely exceeded 15
spirochetes per field. When present, B. burgdorferi was
found most readily in tissues from I. dammini. In Norwich,
females of A. stimulans, Chrysops callidus, and H. lasiophthalma
also contained B. burgdorferi; the prevalence of
infection was 10.5% or less.
Examinations of ovarian tissues from 1,062 blood-seeking
mosquitoes and tabanids revealed that the majority had
completed at least one gonotrophic cycle and, therefore, had
taken at least one blood meal before depositing eggs (oviposition)
and starting the second ovarian cycle. For uninfected
insects, the numbers of parous specimens (i.e., with evi-
VOL. 26, 1988

Downloaded from jcm.asm.org by on November 3, 2009

1484 MAGNARELLI AND ANDERSON
TABLE 2. Parity of biting insects with or without B. burgdorferi
in Salem and Norwich, Conn. during 1986 and 1987
No. of infected No. of uninfected
Arthropod species Total females females
dissected
Nulliparous Parous Nulliparous Parous
A. canadensis 121 il 35 75
A. cinereus 20 9 il
A. stimulans 43 2 2 39
A. triseriatus 38 2 22 14
C. callidus 162 15 102 45
C. cincticornis 28 13 15
C. geminatus 46 12 34
C. macquarti 37 3 21 13
C. univittatus 123 13 40 70
C. vittatus 100 1 1 58 40
H. epistates 8 1 2 5
H. hinei 68 1 32 35
H. lasiophthalma 201 il 66 124
H. sodalis 38 36 2
T. lineola 15 8 7
T. quinquevittatus 14 8 6
Total 1,062 1 60 466 535
a Not all infected mosquitoes were dissected to determine reproductive life
history. Nulliparous, No evidence of egg maturation and oviposition; parous,
at least one ovarian cycle completed.
dence of oviposition) were higher (52.2 to 95.1%) than
nulliparous individuals (i.e., no evidence of oviposition) in 9
of 16 species studied (Table 2). Nearly all of the 61 infected
insects had completed at least one gonotrophic cycle. One
female of Chrysops vittatus harbored B. burgdorferi but had
not yet oviposited.
During 1986 and 1987, 133 P. leucopus were captured in
Salem and Norwich and examined for ticks. Infected larvae
(n = 22) and nymphs (n = 20) of I. dammini and D. variabilis
(seven larvae and three nymphs) were removed from 30
white-footed mice during June and July in Salem. An additional
34 mice from Salem carried either or both ticks, but no
spirochetes were detected in these ectoparasites. The remaining
eight mice had no ticks attached at the time of
capture. The numbers of infected I. dammini larvae (30.2%
of 73) and nymphs (46.5% of 43) in Salem exceeded those of
D. variabilis (21.9% of 32 larvae and 15% of 20 nymphs).
Although the prevalence of infected I. dammini nymphs
during 1986 (45.8%) was nearly equal to that recorded in
1987 (47.4%), the fourfold difference in numbers of larvae
harboring B. burgdorferi (10 and 44.2%) was statistically
significant. In Norwich, 61 white-footed mice were captured,
and of these, 4 carried uninfected I. dammini (two larvae)
and D. variabilis (13 larvae and 1 nymph).
Adults of I. dammini and D. variabilis, collected in Salem
during the spring or summer of 1986 and 1987, were screened
by IFA methods for B. burgdorferi. Of the 61 males and 83
females of I. dammini tested, 19 (31.2%) and 41 (49.4%),
respectively, were found to be carrying the Lyme disease
spirochete. Application of IFA staining procedures to
midgut tissues from 26 males and 29 females of D. variabilis,
obtained in the same habitat as I. dammini, revealed no
spirochetes.

To determine whether mosquitoes could transmit B. burgdorferi,
field-caught blood-seeking females of A. canadensis
and A. stimulans were allowed to feed on uninfected hamsters
in the laboratory. Five groups of 113 A. canadensis
females were each placed with five separate hamsters (16 to
35 mosquitoes per group), while two groups of 43 A. stimulans
females (15 and 28 per group) were placed with two
other hamsters. Of these, 71 A. canadensis and 30 A.
stimulans ingested partial or complete blood meals. B.
burgdorferi was detected in the head tissues of nine and two
blood-fed specimens, respectively. At least one infected
mosquito had fed partially or completely from each of the
exposed hamsters. No isolations were made from the
spleens or kidneys of seven hamsters fed upon by mosquitoes
or from four others held as negative controls. '
However,
B. burgdorferi was recovered from the two hamsters that
had been inoculated with BSK medium containing these
spirochetes. In addition, one of five hamsters fed upon by A.
canadensis had antibodies to B. burgdorferi at a titer of 1:32.
An infected mosquito ingested blood from this hamster, and
the antibody titer was reproducible. The remaining hamsters
exposed to mosquitoes or held as negative controls had no
antibodies. Those inoculated with spirochetes had antibody
titers of 1:64 or 1:256.

Fifty-seven females of T. nigrovittatus ingested infected
blood from membrane feeding devices. Of these, 28 had
living spirochetes in their heads (including anterior digestive
tract tissues). Duplicate preparations were positive by IFA
staining. Although 26 infected females were examined within
24 h after feeding, two females harbored living spirochetes
for 2 to 3 days after ingesting infected blood. In IFA tests of
15 females that ingested uninfected blood in the laboratory
and of 66 host-seeking T. nigrovittatus collected in Milford,
no spirochetes were detected.

DISCUSSION
Members of several species of arthropods harbor B.
burgdorferi, but the prevalence of infection was highly
variable. In I. dammini, the chief vector of B. burgdorferi in
Connecticut (4, 5, 21, 32), the proportion of infected ticks
differed from 11 to 54%, depending on the site, season, and
sampling method. At Shelter Island, N.Y., an infection rate
of 61% has been reported (9). The presence of B. burgdorferi
in biting insects also varied. During 1985, 14 species of
hematophagous insects were found to be carrying this bacterium
in Norwich, Conn. (22); rates were as high as 21% for
C. callidus. In the present study, females of three species
from Norwich contained B. burgdorferi, and the prevalence
of infection for C. callidus was 50% lower.

Horse flies and deer flies can disperse readily from breeding
areas (16, 35). The infected females collected in Norwich
may have acquired B. burgdorferi elsewhere. This study site
does not appear to be an important focus for Lyme disease,
because the numbers of I. dammini on mice were very low
and B. burgdorferi was not found in these ticks. In addition,
we did not collect I. dammini adults while flagging vegetation
during the spring and fall. Although the sources of
infection for mosquitoes and tabanids are unknown, the
number of infected specimens may vary with changes in
population densitites of large mammals such as white-tailed
deer (Odocoileus virginianus), horses, or cattle. Antibodies
to B. burgdorferi have been detected in deer (21, 24) and
horses (27; L. A. Magnarelli, J. F. Anderson, E. Shaw, J. E.
Post, and F. C. Palka, Am. J. Vet. Res., in press), indicating
that these animals were exposed to the Lyme disease spirochete
or to another closely related Borrelia organism. However,
isolation and identification of B. burgdorferi are
needed to confirm that the large mammals are spirochetemic
and serve as reservoirs of infection. In comparison, whitefooted
mice are abundant in forests and known to be
competent reservoirs for B. burgdorferi (2, 3, 14, 18). With
relatively small home ranges, and as important hosts for I.
dammini, these rodents serve to maintain B. burgdorferi
infections in foci and to infect ticks during the warmer
months. Therefore, the presence of infected I. dammini is
convincing evidence that the sampling area is a focus for
Lyme disease.
Infected I. dammini and D. variabilis coexisted on whitefooted
mice. This reinforces the epidemiological significance
of this rodent in Lyme borreliosis. Since transovarial transmission
of B. burgdorferi is low in I. dammini (25, 29), larvae
mainly acquire these spirochetes by feeding on infected
hosts. Based on lower percentages of infected D. variabilis
nymphs and the absence of B. burgdorferi in questing adults
of this species, transstadial transmission in D. variabilis is
probably inefficient. In addition, there are no convincing
reports indicating an association between American dog tick
bites and the development of erythema migrans in humans.
Therefore, adults of this species do not appear to be vectors
of B. burgdorferi.
The occurrence of infected ticks and biting insects in
Salem indicates that B. burgdorferi is widely distributed
among hematophagous arthropod populations. As in East
Haddam and Lyme, two communities that border Salem
where Lyme disease is also endemic (23, 33), I. dammini is
abundant. Verification of B. burgdorferi in arthropods from
Salem confirms earlier clinical reports on human infections
in this community. Since birds carry infected I. dammini
larvae and nymphs (4), the range of this tick may continue to
expand, and Lyme disease may become endemic in other
communities in southcentral and southeastern Connecticut.

Ovarian examinations of biting insects revealed that
nearly all of the infected, blood-seeking mosquitoes and
tabanids had completed at least one ovarian cycle. Unlike
ticks, mosquitoes and tabanids can ingest multiple blood
meals from different mammals during a gonotrophic cycle
(20, 34) and in the process may acquire B. burgdorferi from
one or more infected hosts. Maximal periods of survival for
B. burgdorferi in naturally infected biting insects are unknown,
but in experimentally infected mosquitoes, B. burgdorferi
lived less than 6 days in the insect's digestive system
(26). This, coupled with the relatively low number of spirochetes
found in head tissues of field-caught females and no
isolates of B. burgdorferi from hamsters fed upon by infected
mosquitoes, indicates that these insects may not be suitable
hosts for this bacterium. The low-level immune response in
a hamster fed upon by an infected female of A. canadensis
may have been directed against dead or weakened B. burgdorferi.
Although anecdotal, there are records of deer fly
bites and the subsequent development of erythema migrans
in persons who had Lyme disease (22). In addition, B.
burgdorferi survives for brief periods in T. nigrovittatus.
Further studies are needed to confirm that deer flies or horse
flies can mechanically transmit B. burgdorferi.


ACKNOWLEDGMENTS
We thank Patricia Trzcinski, Clifford Snow III, George Hansen,
and Carol Lemmon for technical assistance and Alan G. Barbour of
the Departments of Microbiology and Medicine, University of
Texas Health Science Center, San Antonio, for providing the
murine monoclonal antibody.
LITERATURE CITED
1. Anderson, J. F., P. H. Duray, and L. A. Magnarelli. 1987.
Prevalence of Borrelia burgdorferi in white-footed mice and
Ixodes dammini at Fort McCoy, Wis. J. Clin. Microbiol. 25:
1495-1497.
2. Anderson, J. F., R. C. Johnson, L. A. Magnarelli, and F. W.
Hyde. 1985. Identification of endemic foci of Lyme disease:
isolation of Borrelia burgdorferi from feral rodents and ticks
(Dermacentor variabilis). J. Clin. Microbiol. 22:36-38.
3. Anderson, J. F., R. C. Johnson, L. A. Magnarelli, F. W. Hyde,
and J. E. Myers. 1987. Prevalence of Borrelia burgdorferi and
Babesia microti in mice on islands inhabited by white-tailed
deer. Apple. Environ. Microbiol. 53:892-894.
4. Anderson, J. F., and L. A. Magnarelli. 1984. Avian and mammalian
hosts for spirochete-infected ticks and insects in a Lyme
disease focus in Connecticut. Yale J. Biol. Med. 57:627-641.
5. Anderson, J. F., L. A. Magnarelli, W. Burgdorfer, and A. G.
Barbour. 1983. Spirochetes in Ixodes dammini and mammals
from Connecticut. Am. J. Trop. Med. Hyg. 32:818-824.
6. Barbour, A. G., R. A. Heiland, and T. R. Howe. 1985. Heterogeneity
of major proteins in Lyme disease borreliae: a molecular
analysis of North American and European isolates. J. Infect.
Dis. 152:478-484.
7. Barbour, A. G., S. L. Tessier, and W. J. Todd. 1983. Lyme
disease spirochetes and ixodid tick spriochetes share a common
surface antigenic determinant defined by a monoclonal antibody.
Infect. Immun. 41:795-804.
8. Benach, J. L., E. M. Bosler, J. P. Hanrahan, J. L. Coleman,
G. S. Habicht, T. F. Bast, D. J. Cameron, J. L. Ziegler, A. G.
Barbour, W. Burgdorfer, R. Edelman, and R. A. Kaslow. 1983.
Spirochetes isolated from the blood of two patients with Lyme
disease. N. Engl. J. Med. 308:740-742.
9. Burgdorfer, W., A. G. Barbour, S. F. Hayes, J. L. Benach, E.
Grunwaldt, and J. P. Davis. 1982. Lyme disease-a tick-borne
spirochetosis? Science 216:1317-1319.
10. Burgdorfer, W., A. G. Barbour, S. F. Hayes, O. Peter, and A.
Aeschlimann. 1983. Erythema chronicum migrans-a tick-borne
spirochetosis. Acta Trop. 40:79-83.
11. Burgdorfer, W., R. S. Lane, A. G. Barbour, R. A. Gresbrink,
and J. R. Anderson. 1985. The western black-legged tick, Ixodes
pacificus: a vector of Borrelia burgdorferi. Am. J. Trop. Med.
Hyg. 34:925-930.
12. Detinova, T. S. 1962. Age-grouping methods in Diptera of
medical importance. World Health Organization, Geneva.
13. Doby, J. M., J. F. Anderson, A. Couatarmanac'h, L. A. Magnarelli,
and A. Martin. 1986. Lyme disease in Canada with
possible transmission by an insect. Zentralbl. Bacteriol. Mikrobiol.
Hyg. Ser. A 263:488-490.
14. Donahue, J. G., J. Piesman, and A. Spielman. 1987. Reservoir
competence of white-footed mice for Lyme disease spirochetes.
Am. J. Trop. Med. Hyg. 36:92-96.
15. Hard, S. 1966. Erythema chronicum migrans (Afzelii) associated
with mosquito bite. Acta Dermatol. Venereol. (Stockholm)
46:473-476.
16. Hocking, B. 1953. The intrinsic range and speed of flight of
insects. Trans. R. Entomol. Soc. London 104:223-345.
17. Johnson, R. C., N. Marek, and C. Kodner. 1984. Infection of
Syrian hamsters with Lyme disease spirochetes. J. Clin. Microbiol.
20:1099-1101.
18. Levine, J. F., M. L. Wilson, and A. Spielman. 1985. Mice as
reservoirs of the Lyme disease spirochete. Am. J. Trop. Med.
Hyg. 34:355-360.
19. Loken, K. I., C. Wu, R. C. Johnson, and R. F. Bey. 1985.
Isolation of the Lyme disease spirochete from mammals in
Minnesota. Proc. Soc. Exp. Biol. Med. 179:300-302.
20. Magnarelli, L. A., and J. F. Anderson. 1980. Feeding behavior
of Tabanidae (Diptera) on cattle and serologic analyses of partial
blood meals. Environ. Entomol. 9:664-667.
21. Magnarelli, L. A., J. F. Anderson, C. S. Apperson, D. Fish, R. C.
Johnson, and W. A. Chappell. 1986. Spirochetes in ticks and
antibodies to Borrelia burgdorferi in white-tailed deer from
Connecticut, New York State, and North Carolina. J. Wildlife
Dis. 22:178-188.
22. Magnarelli, L. A., J. F. Anderson, and A. G. Barbour. 1986. The
etiologic agent of Lyme disease in deer flies, horse flies, and
mosquitoes. J. Infect. Dis. 154:355-358.
23. Magnarelli, L. A., J. F. Anderson, and W. A. Chappell. 1984.
Geographic distribution of humans, raccoons, and white-footed
mice with antibodies to Lyme disease spirochetes in Connecti-
VOL. 26, 1988
Downloaded from jcm.asm.org by on November 3, 2009
1486 MAGNARELLI AND ANDERSON
cut. Yale J. Biol. Med. 57:619-626.
24. Magnarelli, L. A., J. F. Anderson, and W. A. Chappell. 1984.
Antibodies to spirochetes in white-tailed deer and prevalence of
infected ticks from foci of Lyme disease in Connecticut. J.
Wildlife Dis. 20:21-26.
25. Magnarelli, L. A., J. F. Anderson, and D. Fish. 1987. Transovarial
transmission of Borrelia burgdorferi in Ixodes dammini
(Acari: Ixodidae). J. Infect. Dis. 156:234-236.
26. Magnarelli, L. A., J. E. Freier, and J. F. Anderson. 1987.
Experimental infections of mosquitoes with Borrelia burgdorferi,
the etiologic agent of Lyme disease. J. Infect. Dis. 156:694-
695.
27. Marcus, L. C., M. M. Patterson, R. E. Gilfillan, and P. H.
Urband. 1985. Antibodies to Borrelia burgdorferi in New England
horses: serologic survey. Am. J. Vet. Res. 46:2570-2571.
28. Pechuman, L. L. 1981. The horse flies and deer flies of New
York (Diptera, Tabanidae). Search (Ithaca) 18:1-68.
29. Piesman, J., J. G. Donahue, T. N. Mather, and A. Spielman.
1986. Transovarially acquired Lyme disease spirochetes (Borrelia
burgdorferi) in field-collected larval Ixodes dammini
J. CLIN. MICROBIOL.
(Acari: Ixodidae). J. Med. Entomol. 23:291.
30. Snedecor, G. W., and W. G. Cochran. 1967. Statistical methods.
Iowa State University, Ames.
31. Steere, A. C., N. H. Bartenhagen, J. E. Craft, G. J. Hutchinson,
J. H. Newman, D. W. Rahn, L. H. Sigal, P. N. Spieler, K. S.
Stenn, and S. E. Malawista. 1983. The early clinical manifestations
of Lyme disease. Ann. Intern. Med. 99:76-82.
32. Steere, A. C., R. L. Grodzicki, A. N. Kornblatt, J. E. Craft,
A. C. Barbour, W. Burgdorfer, G. P. Schmid, E. Johnson, and
S. E. Malawista. 1983. The spirochetal etiology of Lyme disease.
N. Engl. J. Med. 308:733-740.
33. Steere, A. C., and S. E. Malawista. 1979. Cases of Lyme disease
in the United States: locations correlated with distribution of
Ixodes dammini. Ann. Intern. Med. 91:730-733.
34. Tempelis, C. H. 1975. Host-feeding patterns of mosquitoes, with
a review of advances in analysis of blood meals. J. Med.
Entomol. 11:635-653.
35. Thornhill, A. R., and K. L. Hays. 1972. Dispersal and flight
activities of some species of Tabanus (Diptera: Tabanidae).
Environ. Entomol. 1:602-606.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » To Syys 08, 2011 14:26

Borrelia-bakteerit leviävät linnuissa olevien punkkien mukana laajoille alueille. Terveydenhuollon ammattilaisten tulee huomioida että borreliatartunta on mahdollista vaikka henkilö ei olisi matkustanut "punkkialueilla" tai kyseisellä alueella ei olisi aiemmin havaittu punkkeja/Borrelioosia.


Widespread dispersal of Borrelia burgdorferi-infected ticks collected from songbirds across Canada.

Scott JD, Anderson JF, Durden LA

J Parasitol 2011 08 24

Abstract
Millions of Lyme disease vector ticks are dispersed annually by songbirds across Canada, but often overlooked as the source of infection. For clarity on vector distribution, we sampled 481 ticks (12 species and 3 undetermined ticks) from 211 songbirds (42 species/subspecies) nationwide. Using PCR, 52 (29.5%) of 176 Ixodes ticks tested were positive for the Lyme disease spirochete, Borrelia burgdorferi s.l. Immature blacklegged ticks, Ixodes scapularis, collected from infested songbirds had a B. burgdorferi infection prevalence of 36% (larvae, 48%; nymphs, 31%). Notably, Ixodes affinis is reported in Canada for the first time and, similarly, Ixodes auritulus for the initial time in the Yukon. Firsts for bird-parasitizing ticks include I. scapularis in Quebec and Saskatchewan. We provide the first records of 3 tick species cofeeding on passerines (song sparrow, Swainson's thrush). New host records reveal I. scapularis on the blackpoll warbler and Nashville warbler. W e furnish the following first Canadian reports of B. burgdorferi-positive ticks: I. scapularis on chipping sparrow, house wren, indigo bunting; I. auritulus on Bewick's wren; and I. spinipalpis on a Bewick's wren and song sparrow. First records of B. burgdorferi-infected ticks on songbirds include: the rabbit-associated tick, Ixodes dentatus, in western Canada; I. scapularis in Quebec, Saskatchewan, northern New Brunswick, northern Ontario; and Ixodes spinipalpis (collected in British Columbia). The presence of B. burgdorferi in Ixodes larvae suggests reservoir competency in 9 passerines (Bewick's wren, common yellowthroat, dark-eyed junco, Oregon junco, red-winged blackbird, song sparrow, Swainson's thrush, swamp sparrow, and white-throated sparrow). We report transstadial transmission (larva to nymph) of B. burgdorferi in I. auritulus. Data suggest a possible 4-tick, i.e., I. angustus, I. auritulus, I. pacificus, and I. spinipalpis enzootic cycle of B. burgdorferi on Vanco uver Island, British Columbia.

Our results suggest that songbirds infested with B. burgdorferi-infected ticks have the potential to start new tick populations endemic for Lyme disease. Because songbirds disperse B. burgdorferi-infected ticks outside their anticipated range, health-care providers are advised that people can contract Lyme disease locally without any history of travel.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » To Maalis 29, 2012 21:19

Punkkien välityksellä tarttuva anaplasma phagocytophilum - bakteeri joka aiheuttaa anaplasmoosin, voi levitä verensiirtojen välityksellä.


Am. J. Clin. Pathol. 2012(Apr); 137(4): 562-5.

Two Cases of Transfusion-Transmitted Anaplasma phagocytophilum.

Annen K, Friedman K, Eshoa C, Horowitz M, Gottschall J, Straus T

BloodCenter of Wisconsin, 638 18th St, Milwaukee, WI 53233.

# DOI: 10.1309/AJCP4E4VQQQOZIAQ


Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium most commonly acquired from tick bites. High seroprevalence rates in endemic regions suggest that transfusion transmission of A phagocytophilum would be a common event; however, only 2 cases have previously been reported. The exact cause of this discrepancy is not known. Whole blood leukocyte-reduction methods used by many blood centers are thought to reduce the risk of transfusion transmission of many pathogens, including A phagocytophilum. We report 2 additional cases of transfusion-transmitted A phagocytophilum in which leukocyte reduction of all transfused units failed to prevent microbial transmission.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » To Huhti 19, 2012 21:18

Äiti sairastui borrelioosiin raskauden aikana. Lapsi kuoli pian syntymänsä jälkeen sydänperäisiin ongelmiin. Lapsen pernasta, munuaisista ja luuytimestä löydettiin borreliabakteereita.

Maternal-Fetal Transmission of the Lyme Disease Spirochete, Borrelia burgdorferi.


Ann Intern Med. 1985 Jul;103(1):67-8.

Maternal-fetal transmission of the Lyme disease spirochete, Borrelia burgdorferi.
Schlesinger PA, Duray PH, Burke BA, Steere AC, Stillman MT.

PMID: 4003991 [PubMed - indexed for MEDLINE


Hennepin County Medical Center and the University of Minnesota Medical School, Minneapolis, Minnesota; Yale University School of Medicine, New
Haven, Connecticut.

From the text :
"We report the case of a woman who developed Lyme discase during the first trimester of pregnancy. She did not recive antibiotic therapy. Her infant, born at 35 weeks gestational age, died of congenital heart disease during the first week of life. Histologie examination of autopsy material showed the Lyme disease spirochete in the spleen, kidneys, and bone marrow."

"A 28-year-old mother of two healthy children became pregnant for the third time in September 1983. Soon thereafter, she participated in outdoor
activities in an area of northwestern Wisconsin known to be endemic for Lyme disease (3).

On 7 November 1983, she noted an expanding annular skin lesion in the left poplileal region reaching a size of 20 X 30 cm. She also developed two secondary skin lesions, headache, stiff neck, arthralgias, malaise, and inguinal lymphadenopathy. All symptoms resolved within several
weeks without treatment. Thereafter, the antepartum course was normal except for recurrent arthralgias during the third trimester. No medications were taken during the pregnancy.

On 6 May 1984, the patient delivered a 3000-g male infant whose estimated gestational age was 35 weeks. No skin lesions were seen. The baby had respiratory distress. An echocardiogram and cardiac catheterization showed a dilated. poorly contractile left ventricle; aortic valvular stenosis; patent ductus arteriosus; and coarctation of thc aorta. Despite emergency balloon catheter dilatation of the coarctation and aortic valvotomy, the infant died after 39 hours."

Annals of internal medicine july 1985 volume 103 number 1

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Pe Touko 11, 2012 07:16

64-vuotias mies sai verensiirron, 5 yksikköä punasoluja joista oli poistettu leukosyyttejä. Kaksi päivää kotiuttamisesta mies sai kuumetta, päänsärkyä, vilunväreitä. Potilaalla todettiin verensiirron välityksellä saatu anaplasmoosi. (2012)


Transfusion-transmitted anaplasmosis from leukoreduced red blood cells.

Authors: Alhumaidan H, Westley B, Esteva C, Berardi V, Young C, Sweeney J

Citation: Transfusion 2012(May)

Location: From the Blood Bank and Transfusion Medicine, the Division of Infectious Disease, The Miriam Hospital, and the Rhode Island Blood Center, Providence, Rhode Island; and Imugen, Inc., Norwood, Massachusetts.

DOI: 10.1111/j.1537-2995.2012.03685.x

BACKGROUND: Human granulocytic anaplasmosis (HGA) is a tick-borne rickettsial infectious disease. To date four cases of transfusion-transmitted anaplasmosis (TTA) have been described in the literature, and only one from leukoreduced red blood cells (RBCs).

CASE REPORT: A 64-year-old patient with acute gastrointestinal blood loss was admitted to the hospital and received 5 units of prestorage leukoreduced RBCs. He was stabilized and discharged. He developed headache, fever, and chills 2 days after discharge and was readmitted. On Day 5 of his second admission polymorphonuclear leukocytes containing morulae consistent with HGA were reported in the peripheral smear.

RESULTS: Samples from the recipient tested positive by polymerase chain reaction (PCR) for Anaplasma phagocytophilum, the causative agent of HGA and a segment from one of the five donors tested positive by both serology and PCR.

CONCLUSION: Leukoreduction theoretically reduces the risk of TTA but does not interdict all infections. TTA requires consideration in recipients of RBC transfusion with unexplained fever.
© 2012 American Association of Blood Banks.[quote]

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » La Heinä 07, 2012 10:08

5%:ssa kaupungeissa ja 25%:ssa metsissä elävistä oravista löydettiin punkkien välittämiä bakteereja. 23.6.2012

http://www.sciencedaily.com/releases/20 ... 094409.htm

Science News

Novel Animal Reservoir for Group of Tick-Borne Diseases Discovered -- And It Lives in Your Backyard

ScienceDaily (June 23, 2012) ? A team of scientists at Washington University in St. Louis has been keeping a wary eye on emerging tick-borne diseases in Missouri for the past dozen years, and they have just nailed down another part of the story.
See Also:
Health & Medicine

Lyme Disease
Immune System

Plants & Animals

Spiders and Ticks
New Species

Earth & Climate

Exotic Species
Rainforests

Reference

Vector (biology)
Tick
Lyme disease
Tularemia

They knew from earlier work that the animal reservoirs for the diseases included white-tailed deer, wild turkey and a species in the squirrel famiiy, but the DNA assay they had used wasn't sensitive enough to identify the species.

Squirrels belong to a large family called the Sciuridae, which includes chipmunks, fox squirrels, red squirrels, flying squirrels, ground hogs and prairie dogs.

In the May issue of the Journal of Medical Entomology the scientists, led by Robert E. Thach, PhD, professor of biology in Arts & Sciences, report that a more sensitive assay has allowed them to identify the major species in question as the eastern gray squirrel.

Yes, the friendly neighborhood seed thief and dog tease is also a mobile tick blood supply and bacteria incubator.

The work is important because tick-borne diseases can be efficiently controlled only if all of the animal reservoirs that might contribute to transmission of the disease have been identified.

Not your New England tick

The most prevalent tick-borne disease in North America is Lyme disease, which is transmitted by the bite of an infected black-legged tick. In the southeastern United States, however, the most common diseases are ehrlichioses and STARI, which are transmitted by the bite of a different tick, the lone star tick.

Until 1986, ehrlichia bacteria were thought to cause disease only in animals. But in that year, a physician noticed mulberry-shaped aggregates characteristic of the bacteria in the blood of a gravely ill man.

The lone star tick, similarly, was thought to be merely a nuisance species until 1993, when the DNA of one of the ehrlichia species was found in lone star ticks collected in Missouri and several other states.

Ehrlichiosis typically begins with vague symptoms that mimic those of other bacterial illnesses. In a few patients, however, it progresses rapidly to affect the liver and other organs, and may cause death unless treated with antibiotics. STARI is similar to Lyme disease but seems to be less virulent.

The reservoirs

By 2010, with the pathogens and their vector identified, the WUSTL team was trying to find the animal reservoirs.

Looking for pathogens and host species, they ran two assays on the ground-up ticks: one to identify the DNA of pathogens and the other to identify the DNA of animals that had provided blood meals.

The blood meal assay on ticks carrying pathogens identified white-tailed deer blood and the blood of a species in the squirrel family, but it couldn't distinguish among 20 or so possible squirrel species.

So the team was very interested when they read a paper in the Journal of Medical Entomology about a new assay that could identify tick blood meals down to the species level.

The assay, developed by scientists at the University of Neuchatel in Neuchatel, Switzerland, used a segment of mitochondrial DNA instead of nuclear DNA as a species marker.

Mitochondria, organelles within the cells that convert energy into forms cells can use, have their own DNA, probably because they were once free-living bacteria.

For reasons that are not entirely clear, mitochondrial DNA mutates faster than DNA tucked away in the cell nucleus. It may be that the mitochondria simply have more primitive DNA repair mechanisms and so cannot fix mistakes if they occur.

In any case, the more mutations, the greater the difference between the DNA of two different species, and the greater the power of the assay to distinguish among species, Thach says.

To tailor the assay for their purposes, the team retrieved the DNA sequences for possible North American host species from Genbank, an open-access sequence database. Sequences not available in the database were determined by the lab.

Lisa S. Goessling, now a research lab supervisor in the School of Medicine, used the sequences to make a palette of probes for 11 species and -- just to make sure the net was cast wide enough -- several higher taxonomic orders.

The scientist then re-ran old samples and newly collected ticks through the new assay. Spots on the assay where the tick blood and the gray squirrel probe overlapped lit up, signaling the presence of gray squirrel blood in the ticks.

Why not the others?

Lone star ticks are famously aggressive and indiscriminate biters, so why hadn't they attacked other animals? Is there something special about deer or gray squirrels that makes the ticks prefer them?

This isn't the kind of question the scientists can answer definitively, but Thach doesn't think so. He has a simpler answer.

"If you think of an inventory of the animals in the woods and the amount of blood in each, well, most of the available blood in the woods is in deer, and next to that in turkeys and squirrels, because turkeys are so big and there are so many squirrels. So I suspect it's mainly just a mass phenomenon," he says.

Neighborhood, neighborhood, neighborhood

Having found gray squirrel DNA in tick blood, the scientists attacked the problem from a different angle to see if they could confirm their results. They trapped gray squirrels rather than ticks.

Were the gray squirrels carrying tick-borne pathogens? The answer, it turned out, depends on where you are. Only 5 percent of the squirrels in a relatively urban suburb (University City, Mo.) were carrying a pathogen, but 25 percent of the squirrels in a wooded "garden suburb" (Kirkwood, Mo.) were infected.


Why the difference? Thach suspects it comes down to white-tailed deer. There are few, if any, in University City, but they cruise backyards in Kirkwood. Wherever deer go they shed ticks.

This also is the likely answer to another conundrum: the absence or near absence of]ticks in Forest Park, the 1,371-acre urban park that adjoins Washington University in St. Louis. Thach says an exhaustive search turned up only one tick.

Why so few ticks? Perhaps because the only deer in Forest Park are the ones in the Saint Louis Zoo.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Viesti Kirjoittaja soijuv » Su Syys 09, 2012 19:59

Anaplasmoosi tarttui verensiirron välityksellä (2012):

Emerging Infect. Dis. 2012(Aug); 18(8): 1354-7. Severe human granulocytic anaplasmosis transmitted by blood transfusion. Jereb M, Pecaver B, Tomazic J, Muzlovic I, Avsic-Zupanc T, Premru-Srsen T, Levicnik-Stezinar S, Karner P and Strle F

http://www.ncbi.nlm.nih.gov/pmc/article ... 2-0180.pdf

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Re: MAHDOLLISET TAUDINVÄLITTÄJÄT

Viesti Kirjoittaja soijuv » La Loka 06, 2012 20:15

36-v nainen sai vakavan anaplasmoosin verensiirron välityksellä.

Emerg Infect Dis. 2012 Aug;18(8):1354-7. doi: 10.3201/eid1808.120180.

Severe human granulocytic anaplasmosis transmitted by blood transfusion.

Jereb M, Pecaver B, Tomazic J, Muzlovic I, Avsic-Zupanc T, Premru-Srsen T, Levicnik-Stezinar S, Karner P, Strle F.

Abstract

A 36-year-old woman acquired severe human granulocytic anaplasmosis after blood transfusion following a cesarean section. Although intensive treatment with mechanical ventilation was needed, the patient had an excellent recovery. Disease caused by Anaplasma phagocytophilum infection was confirmed in 1 blood donor and in the transfusion recipient.

PMID:
22841007
[PubMed - in process]
PMCID:
PMC3414041

**Free PMC Article**

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Re: MAHDOLLISET TAUDINVÄLITTÄJÄT

Viesti Kirjoittaja soijuv » Ti Huhti 09, 2013 10:46

Sveitsi 2013. Hiiret kantavat punkkeja + borreliabakteereita mutta osalla hiiristä on geenimutaatio joka suojelee niitä sairastumiselta. Sairastuneet hiiret oireilevat pitkälti samoin kuin Borrelioosia sairastavat ihmiset.

http://www.sciencedaily.com/releases/20 ... 072925.htm

Wild Mice Have Natural Protection Against Lyme Borreliosis


Apr. 4, 2013 — Like humans, mice can become infected with Borrelia. However, not all mice that come into contact with these bacteria contract the dreaded Lyme disease: Animals with a particular gene variant are immune to the bacteria, as scientists from the universities of Zurich and Lund demonstrate. Wild mice are the primary hosts for Borrelia, which are transmitted by ticks.

Springtime spells tick-time. Lyme borreliosis is the most common tick-borne disease in Switzerland: around 10,000 people a year become infected with the pathogen. The actual hosts for Borrelia, however, are wild mice. Like in humans, the pathogen is also transmitted by ticks in mice. Interestingly, not all mice are equally susceptible to the bacterium and individual animals are immune to the pathogen. Scientists from the universities of Zurich and Lund headed by evolutionary biologist Barbara Tschirren reveal that the difference in vulnerability among the animals is genetic in origin.

Protective gene variant

Tschirren and colleagues examined wild mice for signs of a Borrelia infection in a large-scale field study. Borrelia afzelii -- the scientific name for the bacteria -- feed on mouse blood. The researchers discovered that mice with a particular variant of the antigen receptor TLR2 were around three times less susceptible toBorrelia. "The immune system of mice with this receptor variant recognizes the pathogen better and can trigger an immune response more quickly to destroy the Borrelia in time," says Tschirren. Infected mice exhibit similar symptoms to humans -- especially joint complaints. Consequently, in the wild infected mice probably do not survive for very long and weakened animals soon fall victim to foxes and birds of prey.

Arms race between mice and Borrelia

The protective gene variant is advantageous for its carriers and, according to the researchers, gradually becoming prevalent in the mouse population. Nonetheless, it is unlikely that all mice will one day be resistant to Borrelia. "The increasing resistance in the host is bound to lead to adaptations in Borrelia," predicts Tschirren. "We can observe the evolutionary adaptation through the rearmament in mice and the pathogen."

People also have the antigen receptor TLR2, but not the resistant gene variant observed in mice. Whether the evolutionary arms race between mice and Borrelia will have repercussions for people remains to be seen. According to Tschirren, the bacterium does not necessarily have to become more aggressive for humans.

STUDY: Proceedings of the Royal Society B: Biological Sciences, 2013; 280 (1759): 20130364 DOI: 10.1098/rspb.2013.0364

http://rspb.royalsocietypublishing.org/ ... 9/20130364
Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population

Barbara Tschirren1⇑,
Martin Andersson3,
Kristin Scherman3,
Helena Westerdahl3,
Peer R. E. Mittl2 and
Lars Råberg3

+ Author Affiliations

1Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
3Molecular Ecology and Evolution Laboratory, Department of Biology, Lund University, Sölvegatan 37, 22362 Lund, Sweden

e-mail: barbara.tschirren@ieu.uzh.ch

Abstract

The discovery of the key role of Toll-like receptors (TLRs) in initiating innate immune responses and modulating adaptive immunity has revolutionized our understanding of vertebrate defence against pathogens. Yet, despite their central role in pathogen recognition and defence initiation, there is little information on how variation in TLRs influences disease susceptibility in natural populations. Here, we assessed the extent of naturally occurring polymorphisms at TLR2 in wild bank voles (Myodes glareolus) and tested for associations between TLR2 variants and infection with Borrelia afzelii, a common tick-transmitted pathogen in rodents and one of the causative agents of human Lyme disease. Bank voles in our population had 15 different TLR2 haplotypes (10 different haplotypes at the amino acid level), which grouped in three well-separated clusters. In a large-scale capture–mark–recapture study, we show that voles carrying TLR2 haplotypes of one particular cluster (TLR2c2) were almost three times less likely to be Borrelia infected than animals carrying other haplotypes. Moreover, neutrality tests suggested that TLR2 has been under positive selection. This is, to our knowledge, the first demonstration of an association between TLR polymorphism and parasitism in wildlife, and a striking example that genetic variation at innate immune receptors can have a large impact on host resistance.
FULL TEXT: http://rspb.royalsocietypublishing.org/ ... 30364.full

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Re: MAHDOLLISET TAUDINVÄLITTÄJÄT

Viesti Kirjoittaja soijuv » Ti Marras 19, 2013 12:43

Borreliabakteeri (B.miyamotoi) tarttuu punkkiin myös transovariaalisesti joten ihmisen n mahfdollista saada tartunta myös toukkavaiheen punkista.

Aiheesta löytyy lisätutkimuksia hakusanalla Transovarial transmission of Borrelia burgdorferi:



http://www.ncbi.nlm.nih.gov/pubmed/23238242


Ticks Tick Borne Dis. 2013 Feb;4(1-2):46-51. doi: 10.1016/j.ttbdis.2012.06.008. Epub 2012 Dec 10.
Transovarial transmission of Borrelia spirochetes by Ixodes scapularis: a summary of the literature and recent observations.

Rollend L, Fish D, Childs JE.
Source

Yale School of Public Health, 60 College Street, New Haven, CT 06520-8034, USA. Lindsay.Rollend@yale.edu

Abstract

Transovarial transmission (TOT) of Borrelia burgdorferi (sensu lato), the agent of Lyme disease, by the Ixodes persulcatus group of hard ticks (Ixodidae) has frequently been reported in the literature since the discovery of Lyme disease 1982. Evidence for and against TOT by B. burgdorferi has led to uncertainty and confusion in the literature, causing misconceptions that may have public health consequences. In this report, we review the published information implicating B. burgdorferi as a bacterium transovarially transmitted among ticks of the Ixodes persulcatus group and present new data indicating the transovarially transmitted agent is actually Borrelia miyamotoi. B. miyamotoi, first described in 1995, is antigenically and phylogenetically related to B. burgdorferi, although more closely related to the relapsing fever-group Borrelia typically transmitted by soft ticks (Argasidae). Borrelia infections of unfed larvae derived from egg clutches of
wild-caught Ixodes scapularis are demonstrated to result from transovarial transmission of B. miyamotoi, not B. burgdorferi. The presence of this second Borrelia species, apparently sympatric with B. burgdorferi worldwide also may explain other confusing observations reported on Borrelia/Ixodes relationships.

soijuv
Viestit: 3040
Liittynyt: Ke Tammi 21, 2009 14:16

Re: MAHDOLLISET TAUDINVÄLITTÄJÄT

Viesti Kirjoittaja soijuv » Ke Helmi 05, 2014 13:33

Tri Maynen mukaan "saman borreliabakteerikannan löytyminen pariskunnilta viittaa vahvasti siihen että tauti voi tarttua myös sukupuoliteitse."

The Journal of Investigative Medicine 2014;62:280-281

Borreliosiohjelma KPFA-kanavalla. Ohjelmassa kerrotaan uudesta tutkimuksesta jonka mukaan Borrelioosi näyttäisi olevn sukupuoliteitse tarttuva tauti. Ohjelmassa esiintyy mm. kaksi tutkijaa, R.Stricker ja M.Middelween. "Borrelitartunnan voi saada metsästä punkin välityksellä, mutta sitä suurempi riski saattaa olla sukupuoliteitse tapahtuvat tartunnat."

Ohjelman voi ladata tietokoneelle tai kuunnella osoitteesta:

http://www.kpfa.org/archive/id/99786



TIETOA TUTKIMUKSESTA: [/b]

http://lymedisease.org/news/lyme_diseas ... ssion.html

25.1.2014. Tutkijat tutkivat kolmen ryhmän siemenneste- tai emättimen limakalvonäytteet. Kaikilla borrelioosia sairastavila naisilla emättimestä otettu limakalvonäyte oli positiivinen ja puolella borrelioosia sairastavista miehistä siemennestenäyte oli borrelia positiivinen. Yhdellä heteroseksuaalipariskunnalla oli kummallakin sama bakteerikanta genitaalinäytteissä. Ne jotka eivät sairastaneet borrelioosia, olivat myös tässä testissä borrelia negatiivisia.

NEWS: Recent study suggests that Lyme disease can be sexually transmitted
25th January 2014

spirochete image

Notes one researcher: "There is always some risk of getting Lyme disease from a tick bite in the woods. But there may be a bigger risk of getting Lyme disease in the bedroom.”

Press release, January 25, 2014:

Carmel, CA – A new study suggests that Lyme disease may be sexually transmitted. The study was presented at the annual Western Regional Meeting of the American Federation for Medical Research, and an abstract of the research was published in the January issue of the Journal of Investigative Medicine.

Lyme disease is a tick-borne infection caused by Borrelia burgdorferi, a type of corkscrew- shaped bacteria known as a spirochete (pronounced spiro’keet). The Lyme spirochete resembles the agent of syphilis, long recognized as the epitome of sexually transmitted diseases. Last summer the Centers for Disease Control and Prevention (CDC) announced that Lyme disease is much more common than previously thought, with over 300,000 new cases diagnosed each year in the United States. That makes Lyme disease almost twice as common as breast cancer and six times more common than HIV/AIDS.

“Our findings will change the way Lyme disease is viewed by doctors and patients,” said Marianne Middelveen, lead author of the study presented in Carmel. “It explains why the disease is more common than one would think if only ticks were involved in transmission.”

The present study was a collaborative effort by an international team of scientists. In addition to Middelveen, a veterinary microbiologist from Canada, researchers included molecular biologists Jennie Burke, Augustin Franco and Yean Wang and dermatologist Peter Mayne from Australia working with molecular biologists Eva Sapi and Cheryl Bandoski, family practitioner Hilary Schlinger and internist Raphael Stricker from the United States.

In the study, researchers tested semen samples and vaginal secretions from three groups of patients: control subjects without evidence of Lyme disease, random subjects who tested positive for Lyme disease, and married heterosexual couples engaging in unprotected sex who tested positive for the disease.

As expected, all of the control subjects tested negative for Borrelia burgdorferi in semen samples or vaginal secretions. In contrast, all women with Lyme disease tested positive for Borrelia burgdorferi in vaginal secretions, while about half of the men with Lyme disease tested positive for the Lyme spirochete in semen samples. Furthermore, one of the heterosexual couples with Lyme disease showed identical strains of the Lyme spirochete in their genital secretions.


“The presence of the Lyme spirochete in genital secretions and identical strains in married couples strongly suggests that sexual transmission of the disease occurs,” said Dr. Mayne.

“We don’t yet understand why women with Lyme disease have consistently positive vaginal secretions, whilst semen samples are more variable. Obviously there is more work to be done here.”

Dr. Stricker pointed to the unknown risks of contracting Lyme disease raised by the study. “There is always some risk of getting Lyme disease from a tickbite in the woods,” he said. “But there may be a bigger risk of getting Lyme disease in the bedroom.”

Reference: The Journal of Investigative Medicine 2014;62:280-281.

\Presented at the Western Regional Meeting of the American Federation for Medical Research, Carmel, CA, January 25, 2014. http://afmr.org/Western/.

Additional information: officemanager@usmamed.com
- See more at: http://lymedisease.org/news/lyme_diseas ... YLZZG.dpuf

Vastaa Viestiin